sunyong2016
Yong Sun received his PhD degree from the School of Computer Science and Technology, NANJING University of Aeronautics and Astronautics.
Nanjing, China
Pinned Repositories
academicpages.github.io
Github Pages template for academic personal websites, forked from mmistakes/minimal-mistakes
ANFIS
Fuzzy Q learning in Tensorflow , Training an ANFIS.
DeepRL-Chinese
PostGIS-Examples
常用的PostGIS的一些函数使用方法以及自定义函数,比如:pg连接oracle、pg连接sqlserver、导出csv、导入csv、查询XX米范围内数据、模糊查询、热力图聚合、生成扇形、生成栅格、生成泰森多边形、生成蜂巢图、裁剪多边形、计算点所在区域、路径分析、近邻计算等
pytorch_cluster
PyTorch Extension Library of Optimized Graph Cluster Algorithms
Semantic-Parsing
shp2geosparql
Java console tool to convert geometries from shape files to RDF using GeoSPARQL OGC standard . You can extract geometries and spatial relations of a SHP and convert them to RDF in WGS84 Reference System. Geometry2RDF: https://github.com/boricles/geometry2rdf was taken as the base of this develpment.
SKS
A high performance geospatial database that supports spatial keyword search.
TTMF
TTMF: A Triple Trustworthiness Measurement Frame for Knowledge Graphs
sunyong2016's Repositories
sunyong2016/Averaged-DQN
Averaged-DQN implemented by Chainer
sunyong2016/BITS-F312
Neural Networks and Fuzzy Logic - BITS Goa
sunyong2016/Building-Web-and-Mobile-ArcGIS-Server-Applications-with-JavaScript-Second-Edition
Building Web and Mobile ArcGIS Server Applications with JavaScript – Second Edition, published by Packt
sunyong2016/calcite-maps
A Bootstrap theme for designing, styling and creating modern map apps.
sunyong2016/contextual-bandits-recommender
Implementing LinUCB and HybridLinUCB in Python.
sunyong2016/Coursera-ML-AndrewNg-Notes
吴恩达老师的机器学习课程个人笔记
sunyong2016/data
sunyong2016/David-Silver-Reinforcement-learning
Notes for the Reinforcement Learning course by David Silver along with implementation of various algorithms.
sunyong2016/Deep-Reinforcement-Learning-in-Large-Discrete-Action-Spaces
Implementation of the algorithm in Python 3, TensorFlow and OpenAI Gym
sunyong2016/Deep_Multimodal_Embedding
Reproduction of 'Deep Multimodal Embedding: Manipulating Novel Objects with Point-clouds, Language and Trajectories'
sunyong2016/deeplearning_ai_books
deeplearning.ai(吴恩达老师的深度学习课程笔记及资源)
sunyong2016/DeepST
Deep Learning for Spatio-Temporal Data
sunyong2016/DensityPeakCluster
A cluster framework for 'Clustering by fast search and find of density peaks' in science 2014.
sunyong2016/geoQAS
A geo question answering system using strabon, word2vec, wikipedia, OpenStreetMap, gensim, nltk
sunyong2016/interpolation
Spatial interpolation methods.
sunyong2016/Machine-Learning-for-Cyber-Security
Curated list of tools and resources related to the use of machine learning for cyber security
sunyong2016/mapping
Some tools for mapping are stored here.
sunyong2016/Microsoft_taxi_data_visualization
🚕 https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
sunyong2016/Movie_recommendation
Collaborative filtering (CF) is a technique used by recommender systems. Here a c# vs project to suggest Movie to user based on Collaborative filtering (CF)
sunyong2016/polarhub
The Polar Hub on Jekyll
sunyong2016/pro-deep-learning-w-tensorflow
Source code for 'Pro Deep Learning with TensorFlow' by Santanu Pattanayak
sunyong2016/Programming-Collective-Intelligence-Source-Code
集体智慧编程源代码
sunyong2016/py-gdalogr-cookbook
A cookbook full of recipes for using the Python GDAL/OGR bindings.
sunyong2016/python-scraping
Code samples from the book Web Scraping with Python http://shop.oreilly.com/product/0636920034391.do
sunyong2016/reinforcement_learning
Implementation of selected reinforcement learning algorithms in Tensorflow. A3C, DDPG, REINFORCE, DQN, etc.
sunyong2016/spatialanalysis
sunyong2016/TensorFlow_learning_notes
tensorflow学习笔记,来源于电子书:《Tensorflow实战Google深度学习框架》
sunyong2016/Text-Mining-with-Machine-Learning-and-Python
Text Mining with Machine Learning and Python [Video], Published by Packt
sunyong2016/The-subsidy-scheme-of-DiDi
摘要:“打车难”问题是国民关注的热点问题之一。随着“互联网+”时代的到来,各种打车软件应运而生,并推出了多种出租车补贴方案,各种补贴方案是否能缓解打车难,仍有待研究。为此我们搜集相关数据,利用数学建模的方法,研究了“互联网+”时代的出租车资源配置问题,获得了一些有价值的结论。我们的主要工作如下: 由于题目未提供数据,通过查找资料,选择2011年同济大学数学建模夏令营D题提供的深圳市出租车GPS数据进行研究。因数据过于庞大且存在错误,故先要剔除空间、状态上不合理的数据,然后按照时间、经纬度、行驶状态进行归类整理。 问题一要求建立出租车资源供求匹配程度模型。我们选择出租车总量供需比 、出租车拥有量(万人) 、出租车空驶率 三项指标对深圳市出租车匹配程度进行研究。首先,基于出租车总量供需比研究出租车的供求匹配程度,通过查找资料得到出租车需求量的测定模型,代入数据得到2011年深圳市出租车需求量为26110辆,与实际出租车供给量15035辆作比,求得出租车总量供需比 为0.5758,表明2011年深圳市出租车总量的供需匹配程度较差。然后,基于出租车拥有量(万人)研究不同空间出租车的供求匹配程度,数据中深圳市各地区载客点数目比重可评估各地区出租车供给量,与该地区常住人口数(万人)求比值,得到深圳市不同空间出租车拥有量(万人),其中罗湖区、福田区和南山区的出租车拥有量大,出租车供求匹配程度高,而坪山新区和光明新区的出租车拥有量小,出租车供求匹配程度低。最后,基于出租车空驶率研究不同时间出租车资源的供求匹配程度。将一天分为24个时间单位,由数据得到各时间段的空驶时间和运营时间,两者相比得到各时间段的小时平均空驶率,其中在23:00—7:00出租车空驶率最高,出租车供求匹配程度较低,而在8:00—10:00和14:00—18:00空驶率较低,出租车供求匹配程度较高。 问题二通过建立补贴方案吸引力模型,对“缓解打车难”的帮助程度进行评估。我们认为吸引力越大,软件使用越广泛,对“缓解打车难”帮助越大。首先,以每笔补贴金额为指标,利用模糊数学中隶属函数建立补贴金额与吸引力隶属关系式,其中吸引力因子为6.414。结合各公司出租车补贴方案,求得当单笔补贴方案为10元和2元时吸引力分别为0.91220,0.0927。由于补贴方案随时间的推移,其吸引力会发生变化,构建修正模型,得到补贴方案的综合吸引力模型,求得在每笔补贴方案为10元和2元时其值分别为:6.4880,0.6595。 问题三要求设计打车软件补贴方案,并评价方案的合理性。其实质是构建评价补贴方案合理性模型。该模型主要由公司经营成本,顾客满意度和吸引力三因素决定。顾客满意度受到补贴金额影响,因为当补贴金额较高时,司机将会拒载沿边扬招乘客而使其满意度下降。利用非线性规划求解该模型,得到每笔补贴6.53元时结果最优。对于偏远地区、拥堵路段的打车难问题,本文通过建立司机满意度模型并与公司成本的实际相结合,得到对单个出租车的月补贴为860—1035元较合适。 关键词:供求匹配程度 补贴方案吸引力 满意度 “打车难”
sunyong2016/Tile-fetcher
A python script to download map tiles from Open Street Map server