/LawRAG

基于RAG的法律问答机器人

Primary LanguageJupyter Notebook

Hands on TinyRAG

什么是RAG?

LLM会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。

正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为 AI 时代的一大趋势。

RAG 通过在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程,极大地提升了内容的准确性和相关性。RAG 有效地缓解了幻觉问题,提高了知识更新的速度,并增强了内容生成的可追溯性,使得大型语言模型在实际应用中变得更加实用和可信。

以下为笔者所构思的RAG实现过程,这里面主要包括包括三个基本步骤:

  1. 索引 — 将文档库分割成较短的 Chunk,并通过编码器构建向量索引。

  2. 检索 — 根据问题和 chunks 的相似度检索相关文档片段。

  3. 生成 — 以检索到的上下文为条件,生成问题的回答。

参考文献

Name Paper Link
When Large Language Models Meet Vector Databases: A Survey paper
Retrieval-Augmented Generation for Large Language Models: A Survey paper
Learning to Filter Context for Retrieval-Augmented Generation paper
In-Context Retrieval-Augmented Language Models paper