Deep learning library written in python just for fun.
It uses numpy for computations. API is similar to PyTorch's one.
-
In examples directory there is a MNIST linear classifier, which scores over 96% accuracy.
-
Sequential model creation:
from deepy.module import Linear, Sequential
from deepy.autograd.activations import Softmax, ReLU
my_model = Sequential(
Linear(28 * 28, 300),
ReLU(),
Linear(300, 300),
ReLU(),
Linear(300, 10),
Softmax()
)
- Losses:
from deepy.module import Linear
from deepy.autograd.losses import CrossEntropyLoss, MSELoss
from deepy.variable import Variable
import numpy as np
my_model = Linear(10, 10)
loss1 = CrossEntropyLoss()
loss2 = MSELoss()
good_output = Variable(np.zeros((10,10)))
model_input = Variable(np.ones((10,10)))
model_output = my_model(model_input)
error = loss1(good_output, model_output)
# now you can propagate error backwards:
error.backward()
- Optimizers:
from deepy.module import Linear
from deepy.autograd.losses import CrossEntropyLoss, MSELoss
from deepy.variable import Variable
from deepy.autograd.optimizers import SGD
import numpy as np
my_model = Linear(10, 10)
loss1 = CrossEntropyLoss()
loss2 = MSELoss()
optimizer1 = SGD(my_model.get_variables_list())
good_output = Variable(np.zeros((10,10)))
model_input = Variable(np.ones((10,10)))
model_output = my_model(model_input)
error = loss1(good_output, model_output)
# now you can propagate error backwards:
error.backward()
# and then optimizer can update variables:
optimizer1.zero_grad()
optimizer1.step()