/Llama-X

Open Academic Research on Improving LLaMA to SOTA LLM

Primary LanguagePythonApache License 2.0Apache-2.0

Llama-X

Code License Data License

Llama-X: Open Academic Research on Improving LLaMA to SOTA LLM

This is the repo for the Llama-X, which aims to:

  • Progressively improve the performance of LLaMA to SOTA LLM with open-source community.
  • Conduct Llama-X as an open academic research which is long-term, systematic and rigorous.
  • Save the repetitive work of community and we work together to create more and faster increment.

The project will follow these principles:

  • We will publish all the code, model, data, and experiments details.
  • We will continuously improve the model version by version and open the newest method.
  • We will summary the method of each main version as academic papers.
  • We announce a complete research plan. The contributors are wellcome to cooperate with each other to progressively improve Llama-X through iteration of the target versions.
  • The check-in of the new model must achieve significant improvement with current version on automatic evaluation.

📣 Please join Join us on Discord if you are interested in Llama-X.

Contents

  1. Ten main research areas

  2. Llama-X Model Version

  3. Llama-X Evaluation

  4. Llama-X Paper List

  5. Usage

  6. How to contribute

Ten main research areas

[1]. Research on Instruction Tuning

  • instruction-following tuning

[2]. Research on RLHF & RLAIF

  • fundamental RLHF
  • AI learning from AI

[3]. Research on Data Quality

  • high quality data for pre-training, fine-tuning, user feedbacks, multi-modality, etc

[4]. Research on Long Context Transformer

  • enable efficient transformers for long sequence (>30k)

[5]. Research on Multi-modal (text + image) Modeling

  • text + image in; text out

[6]. Research on Multilingual

  • comparable multilingual performance with English

[7]. Research on Efficient infrastructure and optimization

  • improve training and inference speed
  • build deep learning stack which scales predictably

[8]. Research on Evaluation

  • comprehensive evaluation of model capabilities

[9]. Research on Interpretability

  • interpret the source of each capability of LLM

[10]. Research on LLM on Actions

  • combine LLM with search, recommendation and other plugins

Llama-X Model Version

Llama-X Baseline Performance
3.0.0 (LLaMA) GPT-3 Outperform
3.1.0 text-davinci-001 Comparable
3.2.0 text-davinci-002 Comparable
3.3.0 text-davinci-003 Comparable
3.5.0 gpt-35-turbo Comparable
3.6.0 GPT-4 80% Avg.Gap
3.7.0 GPT-4 60% Avg.Gap
3.8.0 GPT-4 40% Avg.Gap
3.9.0 GPT-4 20% Avg.Gap
4.0.0 GPT-4 Comparable

We are focusing on the above research areas [1] & [3] now, and would public our first version of model (Llama-X 3.0.1) and paper before 4/15/2023.

Llama-X Evaluation

Each new version of Llama-X model should significantly outperform (+>1%) the current version model on the automatic evaluation of all the following Type-A benchmarks. And the additional evaluation for Type-B benchmarks should be added in the 3.6.0+ versions:

Type Benchmarks
A MMLU
A HumanEval
A GSM-8K
A NaturalQuestions
A TruthfulQA
B Leetcode
B GRE
B AP
B MMLU-Multilingual
B Visual Inputs (TBD)

Llama-X Paper List

  1. LLaMA: Open and Efficient Foundation Language Models.

Usage

  • Setup. Install the conda environment:
conda create -n llamax python=3.10
conda activate llamax
git clone https://github.com/AetherCortex/Llama-X.git
cd Llama-X/src
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install -e .
cd ../..
pip install -r requirements.txt
Llama-X/src/data/alpaca_data.json
  • Convert LLaMA checkpoint to HuggingFace format:
cd Llama-X/src
python transformers/src/transformers/models/llama/convert_llama_weights_to_hf.py \
    --input_dir /path/to/llama-7B/ \
    --model_size 7B \
    --output_dir /path/to/llama-7B/hf
  • Train LLaMA-7B on DeepSpeed Zero-3:
deepspeed train.py \
    --model_name_or_path /path/to/llama-7B/hf \
    --data_path /path/to/example_data.json \
    --output_dir /path/to/llama-7B/hf/ft \
    --num_train_epochs 3 \
    --model_max_length 512 \
    --per_device_train_batch_size 64 \
    --per_device_eval_batch_size 1 \
    --gradient_accumulation_steps 1 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 100 \
    --save_total_limit 2 \
    --learning_rate 2e-5 \
    --warmup_steps 2 \
    --logging_steps 2 \
    --lr_scheduler_type "cosine" \
    --report_to "tensorboard" \
    --gradient_checkpointing True \
    --deepspeed configs/deepspeed_config.json \
    --fp16 True
  • Train LLaMA-7B on DeepSpeed Zero-3 with Multi-nodes
deepspeed --num_gpus num_of_gpus_in_each_node \
    --num_nodes num_of_nodes \
    --master_addr ip_address_of_main_node \
    --master_port 34545 \
    --hostfile configs/hostfile \
    train.py \
    --model_name_or_path /path/to/llama-7B/hf \
    --data_path /path/to/example_data.json \
    --output_dir /path/to/llama-7B/hf/ft \
    --num_train_epochs 3 \
    --model_max_length 512 \
    --per_device_train_batch_size 64 \
    --per_device_eval_batch_size 4 \
    --gradient_accumulation_steps 1 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 100 \
    --save_total_limit 2 \
    --learning_rate 2e-5 \
    --warmup_steps 2 \
    --logging_steps 2 \
    --lr_scheduler_type "cosine" \
    --report_to "tensorboard" \
    --gradient_checkpointing True \
    --deepspeed configs/deepspeed_config.json \
    --fp16 True
  • The current code of Llama-X support:
    • Fully Finetune: Optimize full LLaMA checkpoint, instead of Low-Rank Adaptation (LoRA).
    • High Efficiency: Training 7B model with 50k examples/epoch & batch_size=64 within 1 hour on 8 x V100 GPUs.
LLaMA Batch Size V100s Time (h)
7 B 64 8 1.00
13 B 32 8 2.00
  • Inference
# web demo inference
python generate.py

# batch inference
To Do

How to contribute

Developers can become Contributors by contributing helpful code, data, paper and computing resource, etc.

  1. Code: Including algorithm implementation, training optimization, inference optimization, and model deployment.

  2. Data: Every research area and version iteration requires high-quality data, including instruction-answer, pre-training, multi-modal, multilingual, and user feedbacks data, etc.

  3. Paper: We will maintain a Llama-X Paper List, and use Llama-X as the base model for optimized, fully tested, and significantly improved academic papers. You can check in to the Llama X Paper List.

  4. Computing resource: We hope to help accelerate model iteration speed by coordinating redundant computing power from some developers or non-profit sponsorship from universities/enterprises.

How to communicate with us

  1. Github Issues

  2. Email: llama-x@mail.com

  3. Discord: Join us on Discord

Thanks For

This project has been inspired by multiple open source projects:

Meta AI LLaMA

Huggingface Transformers Llama

Alpaca and Alpaca-LoRA

Disclaimer

The use of resources(e.g., code, data and model weights) related to this project is limited to academic research and is prohibited for commercial purposes. The content generated by any model of Llama-X is subject to factors such as randomness and uncontrollability, and this project cannot guarantee its accuracy. This project does not assume any legal responsibility for the content of the model output, nor does it assume any responsibility for any losses that may arise from the use of related resources and output results.