/VRP-SAM

[CVPR 2024] Official implementation of "VRP-SAM: SAM with Visual Reference Prompt"

Primary LanguagePythonMIT LicenseMIT

VRP-SAM: SAM with Visual Reference Prompt

Update:

  1. The manuscript has been accepted in CVPR 2024.
  2. Core code has been updated

This is the official implementation based on pytorch of the paper VRP-SAM: SAM with Visual Reference Prompt

Authors: Yanpeng Sun, Jiahui Chen, Shan Zhang, Xinyu Zhang, Qiang Chen, Gang Zhang, Errui Ding, Jingdong Wang, Zechao Li

Requirements

  • Python 3.10
  • PyTorch 1.12
  • cuda 11.6

Conda environment settings:

conda create -n vrpsam python=3.10
conda activate vrpsam

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge

Segment-Anything-Model setting:

cd ./segment-anything
pip install -v -e .
cd ..

Preparing Few-Shot Segmentation Datasets

Download following datasets:

1. PASCAL-5i

Download PASCAL VOC2012 devkit (train/val data):

wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar

Download PASCAL VOC2012 SDS extended mask annotations from our [Google Drive].

2. COCO-20i

Download COCO2014 train/val images and annotations:

wget http://images.cocodataset.org/zips/train2014.zip
wget http://images.cocodataset.org/zips/val2014.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip

Download COCO2014 train/val annotations from our Google Drive: [train2014.zip], [val2014.zip]. (and locate both train2014/ and val2014/ under annotations/ directory).

Create a directory '../dataset' for the above few-shot segmentation datasets and appropriately place each dataset to have following directory structure:

../                         # parent directory
├── ./                      # current (project) directory
│   ├── common/             # (dir.) helper functions
│   ├── data/               # (dir.) dataloaders and splits for each FSSS dataset
│   ├── model/              # (dir.) implementation of VRP-SAM 
│   ├── segment-anything/   # code for SAM
│   ├── README.md           # intstruction for reproduction
│   ├── train.py            # code for training HSNet
│   └── SAM2Pred.py         # code for prediction module
│    
└── Datasets_HSN/
    ├── VOC2012/            # PASCAL VOC2012 devkit
    │   ├── Annotations/
    │   ├── ImageSets/
    │   ├── ...
    │   └── SegmentationClassAug/
    └── COCO2014/           
        ├── annotations/
        │   ├── train2014/  # (dir.) training masks (from Google Drive) 
        │   ├── val2014/    # (dir.) validation masks (from Google Drive)
        │   └── ..some json files..
        ├── train2014/
        └── val2014/

Training

We provide a example training script "train.sh". Detailed training argumnets are as follows:

python3 -m torch.distributed.launch --nproc_per_node=$GPUs$ train.py \
        --datapath $PATH_TO_YOUR_DATA$ \
        --logpath $PATH_TO_YOUR_LOG$ \
        --benchmark {coco, pascal} \
        --backbone {vgg16, resnet50, resnet101} \
        --fold {0, 1, 2, 3} \
        --condition {point, scribble, box, mask} \
        --num_queirs 50 \
        --epochs 50 \
        --lr 1e-4 \
        --bsz 2     

Example qualitative results (1-shot):

BibTeX

If you use this code for your research, please consider citing:

@inproceedings{sun2024vrp,
    title={VRP-SAM: SAM with Visual Reference Prompt},
    author={Sun, Yanpeng and Chen, Jiahui and Zhang, Shan and Zhang, Xinyu and Chen, Qiang and Zhang, Gang and Ding, Errui and Wang, Jingdong and Li, Zechao},
    booktitle={Conference on Computer Vision and Pattern Recognition 2024},
    year={2024}
}