SuperResolution_Survey

Deep Learning for Image Super-Resolution: A Survey

Table of Contents

Pre-upsampling
Post-upsampling
Progressive Upsampling
Iterative Up-and-down Sampling

Visible Images
Infrared Images

Models For Visible Images
Models For Infrared Images

Super-resolution Frameworks 超分辨框架

Pre-upsampling

Learning a Deep Convolutional Network for Image Super-Resolution(SRCNN)
Memnet: A persistent memory network for image restoration(MemNet)
Deeply-recursive convolutional network for image super-resolution(DRCN)

Post-upsampling

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network(SRGAN)

Progressive Upsampling

Iterative Up-and-down Sampling

Datasets 数据集

Visible Images 可见光图像

Name Amount Format Link
Set5 5 PNG Downoad
Set14 14 PNG Downoad
BSDS300 300 JPG Downoad
BSDS500 500 JPG Downoad
DIV2K(NTIRE2017) 1000 PNG Website

Infrared Images 红外图像

Name Amount Resolution Format Link
CVC-09 13184 640*480 PNG Website
CVC-14 31962 640*471, 64*128 TIF Website
CVC-09-1K(Trainset For HetSRWGAN) 1000 640*480 PNG Website
IR100(Trainset For PSRGAN) 100 640*480 PNG Website

Representative Models 经典模型

Models For Visible Images

Method Publication Keywords(Framkworks, Upsampling Methods, Network Design, Learning Strategies)
SRResNet 2017, CVPR Post-upsampling, Sub-pixel, Residual
SRGAN 2017, CVPR
BSRGAN 2021, ICCV Blind SR, Complex Degradation Model, Random Shuffle
USRNet 2020, SVPR Integrating Model-based Method and Learning-based Method, Data Module + Prioe Module + Hyper-parameter Module

Models For Infrared Images

Method Publication Keywords(Framkworks, Upsampling Methods, Network Design, Learning Strategies)