This code implements a simple framework for articulated pose estimation. In the current stage, the experiments are restricted to LSP dataset.
python cluster_relation.py --data ./joints_scaled_cropped.mat --human_exp_dir xxx --num_cluster 11
python main.py --checkpoint_dir ./log_baseline --batch_size 32 --lr 1e-3 --joint_size 60
After training the baseline on individual joints, call
python main_pair.py --checkpoint_dir ./log_side_by_side --joint_size 60 --batch_size 32 --lr 1e-2 --pretrained ./log_baseline/model_best.pth --freeze_backbone 1 --hidden_size 100
First training the (partial) model on individual joints:
python main.py --checkpoint_dir ./log_rel_individual --batch_size 32 --lr 1e-3 --joint_size 60 --use_rel 1
python main_pair.py --checkpoint_dir ./log_side_by_side --joint_size 60 --batch_size 32 --lr 1e-2 --pretrained ./log_rel_individual/model_best.pth --freeze_backbone 1 --hidden_size 100 --use_rel 1 --use_pos 1
python main.py --mode eval --weights ./log_xxx/model_best.pth --batch_size 32 --lr 1e-3 --joint_size 60
Note that use_rel
should be set accordingly.
python main_pair.py --weights ./log_xxx/model_best.pth --joint_size 60 --batch_size 32 --lr 1e-2 --pretrained ./log_rel_individual/model_best.pth --freeze_backbone 1 --hidden_size 100
Note that use_rel
, use_pos
should be set accordingly. There are also three arguments for ablation study, namely:
--ablation
: for testing with 65 images selected for human experiments.--rotate
: for testing with different degrees of rotation on cue.--cue_size
: for testing with a cue size different from the target one.