/usbclassifier

Bagging Classifier with Under Sampling

Primary LanguagePythonMIT LicenseMIT

USBaggingClassifier

Overview

Bagging Classifier with Under Sampling.
This approach is good for classification imbalanced data.
You can use both of Binary or Multi-Class Classification.
Methods could use looks like sci-kit learn's APIs.
Only use in python 3.x

Usage

Parameters

  • base_estimator : object
    Classifier looks like sklearn.XXClassifier.
    Classifier must have methods [fit(X, y), predict(X)].
    It is not nesessary predict_proba(X), but if it has this method,
    you could select 'soft voting' option and get predict probability.
  • n_estimators : int (default=10)
    The number of base estimators.
  • voting : str {'hard','soft'} (default='hard')
    hard : use majority rule voting
    soft : argmax of the sums of prediction probabilities
  • n_jobs : int (default=1)
    number of jobs to run in parallel for fit.
    If -1, equals to number of cores.

methods

  • fit(X, y)
    X : pandas.DataFrame
    y : pandas.Series
    return : None
  • predict(X)
    X : pandas.DataFrame
    return : predicted y : numpy.array
  • predict_proba(X)
    X : pandas.DataFrame return : predicted probabilities (mean of all bagged models)

LICENSE

This software is released under the MIT License, see LICENSE