/clr_chainer

Cyclical Learning Rate (CLR) with Chainer

Primary LanguagePythonMIT LicenseMIT

clr_chainer

Cyclical Learning Rate (CLR) implementation with Chainer.

CLR choices

triangular

triangular

triangular2

triangular2

exp_range

exp_range

Usage

Add CLR extension to the trainer.
The value_range in the following code means (lr_min, lr_max).
NOTE: An initial value for attr of the optimizer is overwritten in the CLR initialization.

from clr.training.extensions import CLR

policy = 'triangular'
step_size = 2000
value_range = (0.01, 0.1)
trainer.extend(CLR('lr', value_range, 2 * step_size, policy))

References