- Install miniconda
- Choose the needed environment, with (environment_gpu.yml) or without CUDA (environment_cpu.yml)
- If you are installing with CUDA, check your drivers first (here)
- Run
conda env update --file environment_cpu.yml --name ariadne_cpu
conda activate ariadne_cpu
conda remove --name %NAME% --all
To start training procedure execute train.py
script and pass to it a path to the
training configuration file
python train.py --config resources/gin/tracknet_v2_train.cfg
Ariadne uses logging
, so to specify the log level one should use --log
parameter. E.g.:
python train.py --config resources/gin/tracknet_v2_train.cfg --log DEBUG
The default loggin level is INFO
.
There are several utility scripts to facilitate ariadne execution on the hydra
JINR cluster:
scripts/hydra_slurm/hydra_cpu.sh
scripts/hydra_slurm/hydra_gpu.sh
scripts/hydra_slurm/govorun_gpu.sh
The main syntax is:
sbatch $SCRIPT_PATH $command_to_be_executed
For example, to execute training script on the GPU queue of hydra cluster:
-
Verify that the miniconda has installed in the
~/miniconda3
or manually change the path in the script you want to execute. Row withsource ~/miniconda3/etc/profile.d/conda.sh
command -
Run
scripts/hydra_slurm/hydra_gpu.sh
script
sbatch scripts/hydra_slurm/hydra_gpu.sh python train.py --config resources/gin/tracknet_v2_train.cfg
- The
slurm-jobid.out
file with stdout will appear in the root directory.
Executing a command on GOVORUN differs from executing Hydra commands only in the need to add a module for working with the supercomputer.
module add GVR/v1.0-1 && \
sbatch scripts/hydra_slurm/govorun_gpu.sh python train.py --config resources/gin/tracknet_v2_train.cfg