kiox is a composable experience replay buffer library.
from kiox.kiox import Kiox
from kiox.transition_buffer import FIFOTransitionBuffer
from kiox.transition_factory import SimpleTransitionFactory
kiox = Kiox(FIFOTransitionBuffer(1000), SimpleTransitionFactory())
# collect experiences
kiox.collect(<obsrvation>, <action>, <reward>, <terminal>)
# sample batch
batch = kiox.sample(256)
kiox is composable and fully Pythonic library. You can add your own sampling algorithms and inject sampling-time logics (e.g. loading image data from disk just before sampling).
kiox provides user-friendly API so that you can instantly incorporate kiox with your RL algorithms.
kiox supports distributed RL training by using ProtocolBuffer and gRPC. Your custom modules will work without any code changes.
kiox supports Linux, macOS and Windows.
$ pip install kiox
Many extensive examples are available.
In actor process:
from kiox.distributed.step_sender import StepSender
sender = StepSender("localhost", 8000, 1)
sender.collect(<obsrvation>, <action>, <reward>, <terminal>)
In trainer process:
# trainer process
from kiox.distributed.server import KioxServer
def transition_buffer_builder():
return FIFOTransitionBuffer(1000)
def transition_factory_builder():
return SimpleTransitionFactory()
# setup server
server = KioxServer(
host="localhost",
port=8000,
observation_shape=(4,),
action_shape=(1,),
reward_shape=(1,),
batch_size=8,
transition_buffer_builder=transition_buffer_builder,
transition_factory_builder=transition_factory_builder,
)
server.start()
# sample batch
batch = server.sample()
# from offline data
from kiox.offline import create_simple_kiox_from_data
kiox = create_simple_kiox_from_data(
observations=<observations>,
actions=<actions>,
rewards=<rewards>,
terminals=<terminals>,
)
$ pip install grpcio-tools
$ scripts/build-protobuf
$ pip install -e .
Any kind of contribution to kiox would be highly appreciated! Please check the contribution guide.