plyr for CSV files
Perform chunkwise processing or split-apply-combine on data in a delimited file(example: CSV) across multiple cores of a single machine with low memory footprint. These functions are a convenient wrapper over the versatile package 'datadr'.
Load fileplyr
package
library("fileplyr")
## Loading required package: tibble
- split-apply-combine example
write.table(mtcars, "mtcars.csv", row.names = FALSE, sep = ",")
temp <- fileply(file = "mtcars.csv"
, groupby = c("carb", "gear")
, fun = identity
, collect = "list"
, sep = ","
, header = TRUE
)
## ----
## Job ID: grucoqnlid__2017-02-03_17_58_43
## Reading data ...
## Completed in 0 secs
## Aggregating ...
## Completed in 0.7 secs
## Collecting ...
## Completed in 0.3 secs
## Done!
## ----
temp
## [[1]]
## $key
## [1] "carb=2|gear=3"
##
## $value
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## 2 15.5 8 318 150 2.76 3.520 16.87 0 0 3 2
## 3 15.2 8 304 150 3.15 3.435 17.30 0 0 3 2
## 4 19.2 8 400 175 3.08 3.845 17.05 0 0 3 2
##
## [[2]]
## $key
## [1] "carb=3|gear=3"
##
## $value
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 16.4 8 275.8 180 3.07 4.07 17.4 0 0 3 3
## 2 17.3 8 275.8 180 3.07 3.73 17.6 0 0 3 3
## 3 15.2 8 275.8 180 3.07 3.78 18.0 0 0 3 3
##
## [[3]]
## $key
## [1] "carb=8|gear=5"
##
## $value
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 15 8 301 335 3.54 3.57 14.6 0 1 5 8
##
## [[4]]
## $key
## [1] "carb=4|gear=4"
##
## $value
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## 3 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## 4 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
##
## [[5]]
## $key
## [1] "carb=6|gear=5"
##
## $value
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6
##
## [[6]]
## $key
## [1] "carb=2|gear=4"
##
## $value
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## 2 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## 3 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## 4 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
##
## [[7]]
## $key
## [1] "carb=1|gear=4"
##
## $value
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## 2 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## 3 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## 4 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
##
## [[8]]
## $key
## [1] "carb=4|gear=5"
##
## $value
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 15.8 8 351 264 4.22 3.17 14.5 0 1 5 4
##
## [[9]]
## $key
## [1] "carb=2|gear=5"
##
## $value
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2
## 2 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
##
## [[10]]
## $key
## [1] "carb=4|gear=3"
##
## $value
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4
## 2 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4
## 3 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4
## 4 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4
## 5 13.3 8 350 245 3.73 3.840 15.41 0 0 3 4
##
## [[11]]
## $key
## [1] "carb=1|gear=3"
##
## $value
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## 2 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## 3 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
to_tibble(temp)
## # A tibble: 11 × 3
## carb gear value
## <chr> <chr> <list>
## 1 2 3 <data.frame [4 × 11]>
## 2 3 3 <data.frame [3 × 11]>
## 3 8 5 <data.frame [1 × 11]>
## 4 4 4 <data.frame [4 × 11]>
## 5 6 5 <data.frame [1 × 11]>
## 6 2 4 <data.frame [4 × 11]>
## 7 1 4 <data.frame [4 × 11]>
## 8 4 5 <data.frame [1 × 11]>
## 9 2 5 <data.frame [2 × 11]>
## 10 4 3 <data.frame [5 × 11]>
## 11 1 3 <data.frame [3 × 11]>
unlink("mtcars.csv")
- chunkwise processing example
write.table(mtcars, "mtcars.csv", row.names = FALSE, sep = ",")
temp <- fileply(file = "mtcars.csv"
, chunk = 10
, fun = function(x){list(nrow(x))}
, collect = "dataframe"
, sep = ","
, header = TRUE
)
## ----
## Job ID: nrohgsxilb__2017-02-03_17_58_44
## Reading data ...
## Completed in 0 secs
## Aggregating ...
## Completed in 0.7 secs
## Collecting ...
## Completed in 0.2 secs
## Done!
## ----
temp
## V1
## 1 10
## 2 2
## 3 10
## 4 10
unlink("mtcars.csv")