/MF-RIS

Primary LanguageMATLAB

Multi-Functional RIS-Aided Wireless Communications

Note: All code and demonstrations are used for our submitted papers:

Wen Wang, Wanli Ni, and Hui Tian, "Multi-Functional RIS-Aided Wireless Communications," submitted to IEEE Internet of Things Journal.


Running the simulations

Prerequisites

Launch

One could run the main.m to see the demo of the algorithms.

Note to change the parameters and modes according to your demand.

References

[1] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface-aided wireless communications: A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3313-3351, May 2021.

[2] W. Wang, W. Ni, H. Tian, Z. Yang, C. Huang, and K. -K. Wong, “Safeguarding NOMA networks via reconfigurable dual-functional surface under imperfect CSI,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 5, pp. 950-966, Aug. 2022.

[3] X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications,” IEEE Trans. Wireless Commun., vol. 21, no. 5, pp. 3083-3098, May 2022.

[4] H. Zhang, S. Zeng, B. Di, Y. Tan, M. Di Renzo, M. Debbah, Z. Han, H. V. Poor, and L. Song, “Intelligent omni-surfaces for full-dimensional wireless communications: Principles, technology, and implementation,” IEEE Commun. Mag., vol. 60, no. 2, pp. 39-45, Feb. 2022.

[5] K. Liu, Z. Zhang, L. Dai, S. Xu, and F. Yang, “Active reconfigurable intelligent surface: Fully-connected or sub-connected?,” IEEE Commun. Lett., vol. 26, no. 1, pp. 167-171, Jan. 2022.

[6] Z. Zhang and L. Dai, “A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network,” IEEE Trans. Signal Process., vol. 69, pp. 4085-4101, Jun. 2021.