Sub-experiment of "STGN: an Implicit Regularization Method for Learning with Noisy Labels in Natural Language Processing" (EMNLP 2022) by Tingting Wu, Xiao Ding, Minji Tang, Hao Zhang, Bing Qin, Ting Liu.
Main experiment: github
Experiment on SST, NoisyNER and wikiHow:
-
SST:
-
NoisyNER:
-
wikiHow:
Data Source: "Analysing the Noise Model Error for Realistic Noisy Label Data" (AAAI 2021) by Hedderich, Zhu & Klakow
This experiment was adapt from "https://github.com/uds-lsv/noise-estimation/tree/master/base_model_performance/exp_ner", and you should follow the instruction of original README.
We give an example shell:
i=1
method=base
for j in 0 1 2
do
python tm_train_hy_nruns.py \
--dataset NoisyNER \
--exp_name ../nrun/ner_$method/$i/seed$j/ \
--params_path best_params$i.json \
--out_tmp ner_out_tmp$i.json \
--sub_script sbatch_ner_hy_sub$i.sh \
--output_dir ../logger/ \
--label_set $i \
--seed $j
done
Options:
- label_set(i): 1,2,3,4,5,6,7
- method: base, STGN
You should run the tm_train_hy_nruns.py with proper params written in json files.