This repository contains PyTorch code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search.
Illustration of the Siamese supernets training with ensemble bootstrapping.
Illustration of the fabric-like Hybrid CNN-transformer Search Space with flexible down-sampling positions.
-
Here is a summary of our searched models:
Model MAdds Steptime Top-1 (%) Top-5 (%) Url BossNet-T0 w/o SE 3.4B 101ms 80.5 95.0 checkpoint BossNet-T0 3.4B 115ms 80.8 95.2 checkpoint BossNet-T0^ 5.7B 147ms 81.6 95.6 same as above BossNet-T1 7.9B 156ms 81.9 95.6 checkpoint BossNet-T1^ 10.5B 165ms 82.2 95.7 same as above -
Here is a summary of architecture rating accuracy of our method:
Search space Dataset Kendall tau Spearman rho Pearson R MBConv ImageNet 0.65 0.78 0.85 NATS-Bench Ss Cifar10 0.53 0.73 0.72 NATS-Bench Ss Cifar100 0.59 0.76 0.79
-
Linux
-
Python 3.5+
-
CUDA 9.0 or higher
-
NCCL 2
-
GCC 4.9 or higher
-
Install PyTorch 1.7.0+ and torchvision 0.8.1+, for example:
conda install -c pytorch pytorch torchvision
-
Install Apex, for example:
git clone https://github.com/NVIDIA/apex.git cd apex pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
-
Install pytorch-image-models 0.3.2, for example:
pip install timm==0.3.2
-
Install OpenSelfSup. As the original OpenSelfSup can not be installed as a site-package, please install our forked and modified version, for example:
git clone https://github.com/changlin31/OpenSelfSup.git cd OpenSelfSup pip install -v --no-cache-dir .
-
ImageNet & meta files
- Download ImageNet from http://image-net.org/. Move validation images to labeled subfolders using following script: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.shvalprep.sh
- download imagenet meta files from Google Drive, put it under
/YOURDATAROOT/imagenet/
-
Download NATS-Bench split version CIFAR datasets from Google Drive. Put it under
/YOURDATAROOT/cifar/
-
Prepare BossNAS repository:
git clone https://github.com/changlin31/BossNAS.git cd BossNAS
- Create a soft link to your data root:
ln -s /YOURDATAROOT data
- Overall stucture of the folder:
BossNAS ├── ranking_mbconv ├── ranking_nats ├── retraining_hytra ├── searching ├── data │ ├── imagenet │ │ ├── meta │ │ ├── train │ │ | ├── n01440764 │ │ | ├── n01443537 │ │ | ├── ... │ │ ├── val │ │ | ├── n01440764 │ │ | ├── n01443537 │ │ | ├── ... │ ├── cifar │ │ ├── cifar-10-batches-py │ │ ├── cifar-100-python
- Create a soft link to your data root:
-
First, move to retraining code directory to perform Retraining or Evaluation.
cd retraining_hytra
Our retraining code of BossNet-T is based on DeiT repository.
-
Evaluate our BossNet-T models with the following command:
-
Please download our checkpoint files from the result table, and change the
--resume
and--input-size
accordingly. You can change the--nproc_per_node
option to suit your GPU numberspython -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --model bossnet_T0 --input-size 224 --batch-size 128 --data-path ../data/imagenet --num_workers 8 --eval --resume PATH/TO/BossNet-T0-80_8.pth
python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py --model bossnet_T1 --input-size 224 --batch-size 128 --data-path ../data/imagenet --num_workers 8 --eval --resume PATH/TO/BossNet-T1-81_9.pth
-
-
Retrain our BossNet-T models with the following command:
-
You can change the
--nproc_per_node
to suit your GPU numbers. Please note that the learning rate will be automatically scaled according to the GPU numbers and batchsize. We recommend training with 128 batchsize and 8 GPUs. (takes about 2 days)python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model bossnet_T0 --input-size 224 --batch-size 128 --data-path ../data/imagenet --num_workers 8
python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model bossnet_T1 --input-size 224 --batch-size 128 --data-path ../data/imagenet --num_workers 8
-
Architecture of our BossNet-T0
-
Get the ranking correlations of BossNAS on MBConv search space with the following commands:
cd ranking_mbconv python get_model_score_mbconv.py
- Get the ranking correlations of BossNAS on NATS-Bench Ss with the following commands:
cd ranking_nats python get_model_score_nats.py
First, go to the searching code directory:
cd searching
-
Search in NATS-Bench Ss Search Space on CIFAR datasets (4 GPUs, 3 hrs)
- CIFAR10:
bash dist_train.sh configs/nats_c10_bs256_accumulate4_gpus4.py 4
- CIFAR100:
bash dist_train.sh configs/nats_c100_bs256_accumulate4_gpus4.py 4
- CIFAR10:
-
Search in MBConv Search Space on ImageNet (8 GPUs, 1.5 days)
bash dist_train.sh configs/mbconv_bs64_accumulate8_ep6_multi_aug_gpus8.py 8
-
Search in HyTra Search Space on ImageNet (8 GPUs, 4 days, memory requirement: 24G)
bash dist_train.sh configs/hytra_bs64_accumulate8_ep6_multi_aug_gpus8.py 8
If you use our code for your paper, please cite:
@article{li2021bossnas,
author = {Li, Changlin and
Tang, Tao and
Wang, Guangrun and
Peng, Jiefeng and
Wang, Bing and
Liang, Xiaodan and
Chang, Xiaojun},
title = {BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search},
journal = {arXiv preprint arXiv:2103.12424},
year = 2021,
}