/NonparametricKNN

A KNN regressor that gives predictions based on customized loss function.

Primary LanguageJupyter NotebookMIT LicenseMIT

##What is NonparametricKNN It is a KNN regressor that gives predictions based on customized loss function. KNN regressor in sklearn simply gives mean value of nearest neighbors as prediction, while NonparametricKNN will search the neighbors to find out if it could give a prediction that is better than the mean value. NonparametricKNN could significantly outperform ordinary KNN, especially when the loss function is strange (for example, SMAPE). Though grid search is time consuming, NonparametricKNN is still fairly fast.

NonparametricKNN supports:

  • Built-in loss, Mean Squared Error loss (MSE loss or L2 loss), Mean Aboslute Error loss (MAE or L1 loss) and Symmetric Mean Absolute Percentage Error loss (SMAPE loss).

  • Customized loss, user could use self-defined loss function as well.

##Dependence NonparametricKNN is implemented in Python 3.6, using numpy to do vector operations. NonparametricKNN could be seen as a modified version of sklearn.neighbors.KNeighborsRegressor. Those packages can be easily installed using pip.

Quick Start

Import the module

from npknn import NonparametricKNN

Initialize model

model = NonparametricKNN(n_neighbors=3,loss='L2')

For the loss function, following choices are provided:

  • 'L2': Mean Squared Error loss (MSE)
  • 'L1': Mean Aboslute Error loss (MAE)
  • 'SMAPE': Symmetric Mean Absolute Percentage Error loss (SMAPE)

Train

model.fit(train,target)

All inputs should be numpy arrays. train should be 2D array and target should be 1D array.

Predict

model.predict(test)

Return predictions as numpy array.

Customized loss

def loss(pred,true):
    result = np.power(pred-true,4)
    return result.mean()
model = NonparametricKNN(n_neighbors=3,loss=loss)

Loss function should take two numpy arrays as inputs, and return a scalar. Directly pass the loss function as argument.