/Taggle

The Customizable wrapper for PyTorch training loop and The helper function for getting major criterion, computer vision model, optimizer

Primary LanguagePythonMIT LicenseMIT

Taggle

The Customizable wrapper for PyTorch training loop and The helper function for getting major criterion, computer vision model, optimizer

Intstallation

Clone:
$ git clone --recursive https://github.com/tattaka/Taggle.git

Using pip:
$ cd Taggle
$ pip install .

You can also use it by passing the path in the script:

sys.path.append('/YOUR_DOWNLOAD_PATH/Taggle')

Features

Engine (Wrapper class for training loop)

Implement only process specific to task as below:

from taggle.engine import BaseEngine

class Engine(BaseEngine):

    def calc_losses(self, outputs, data):
        losses = {}
        losses["loss"] = self.criterions["default"](
            outputs["default"], data[1])
        return losses

    def calc_metrics(self, outputs, data):
        metrics = {}
        metrics["acc-top1"], metrics["acc-top5"] = taggle.utils.metric_functions.accuracy(
            outputs["default"], data[1], topk=(1, 5))
        return metrics

    def forward(self, data):
        outputs = {}
        outputs["default"] = self.models["default"](data[0])
        return outputs

    def backward(self, losses):
        self.update_model(self.models["default"],
                          losses["loss"], self.optimizers["default"])

Engine class can process multiple models, loss, optimizer and scheduler in dict format.
If optimizer, criterion, model, and scheduler are not dict, they are converted to dict inside engine and "default" keys are assigned.
You can also use the Extension class to perform additional processing such as logging.
CSVLoggerExtension, TensorBoardExtension, LineNotifyExtension have already been implemented.
The new processing can be implemented by inheriting the BaseExtension class.

For detail, please see here

Update(2020/11/14):

Separated lr schedulers implementation from engine.
Use the LRSchedulerExtension for new installations and updates of Taggle.

ModelProvider (Helper class for building computer vision models)

It supports major backbone model and Heads used for classification and segmentation.
This feature is inspired by segmentation_models.pytorch.
usage:

model:
    backbone: 
        type: resnet18
        params:
            pretrained: true
    heads:
        output1: 
            type: SimpleHead
            params:
                num_class: 16
        output2: 
            type: UNetHead
            params:
                num_class: 10
import yaml
from taggle.models import ModelProvider
with open("/PATH/config.yaml", "r+") as f:
        config = yaml.load(f)
model_provider = ModelProvider()
model = model_provider.get_model(config['model'])

Also, you can easily customize it by extending ModelProvider class and BaseModel class.

get_optimizer

Get the latest deep learning optimizers from the fork of Best-Deep-Learning-Optimizers using get_optimizer function:

optimizer: 
    type: Adam
    params:
        lr: 1.e-3
        params_rule:
            backbone: 1.e-4
            heads: 1.e-3
from taggle.optimizers import get_optimizer
with open("/PATH/config.yaml", "r+") as f:
        config = yaml.load(f)
optimizer = get_optimizer(model=model, 
                          optimizer=config["optimizer"]["type"], 
                          **config["optimizer"]["params"])

get_losses_dict

Get the major loss functions with dict format:

loss_fn:
    classification:
        type: SmoothCrossEntropyLoss
        params: 
            smoothing: 0.1
from taggle.losses import get_loss_dict
with open("/PATH/config.yaml", "r+") as f:
        config = yaml.load(f)
criterions = get_losses_dict(config["loss_fn"])

License

Project is distributed under MIT License.
This software includes the work that is distributed in the Apache License 2.0.