Explainable Deep Few-shot Anomaly Detection with Deviation Networks
By Guansong Pang, Choubo Ding, Chunhua Shen, Anton van den Hengel
Official PyTorch implementation of "Explainable Deep Few-shot Anomaly Detection with Deviation Networks".
Setup
This code is written in Python 3.6
and requires the packages listed in requirements.txt
. Install with pip install -r requirements.txt
preferably in a virtualenv.
Usage
Step 1. Setup the Anomaly Detection Dataset
Download the Anomaly Detection Dataset and convert it to MVTec AD format. (For datasets we used in the paper, we provided the convert script.) The dataset folder structure should look like:
DATA_PATH/
subset_1/
train/
good/
test/
good/
defect_class_1/
defect_class_2/
defect_class_3/
...
ground_truth/
defect_class_1/
defect_class_2/
defect_class_3/
...
...
NOTE: The ground_truth
folder only available when the dataset has pixel-level annotation.
Step 2. Running DevNet
python train.py --dataset_root=./data/mvtec_anomaly_detection \
--classname=carpet \
--experiment_dir=./experiment \
--epochs=50 \
--n_anomaly=10 \
--n_scales=2
dataset_root
denotes the path of the dataset.classname
denotes the subset name of the dataset.experiment_dir
denotes the path to store the experiment setting and model weight.epochs
denotes the total epoch of training.n_anomaly
denotes the amount of the know outliers.n_scales
denotes the total scales of multi-scales module.
Step 2. Anomaly Explanation
Visualize the localization result of the trained model by the following command:
python localization.py --dataset_root=./data/mvtec_anomaly_detection \
--classname=carpet \
--experiment_dir=./experiment \
--n_anomaly=10 \
--n_scales=2
NOTE: use same argument as the training command.
Citation
@article{pang2021explainable,
title={Explainable Deep Few-shot Anomaly Detection with Deviation Networks},
author={Pang, Guansong and Ding, Choubo and Shen, Chunhua and Hengel, Anton van den},
journal={arXiv preprint arXiv:2108.00462},
year={2021}
}