Pytorch Deep Learning blocks and architectures built using abstract classes for ease of configuration
Abstract classes:
AbstractBaseBlock
AbstractBaseArchitecture
AbstractBaseClassifier
AbstractBaseSequential
Configurable blocks:
- Convolution blocks:
nn.Conv2d
orCoordConv
- Activation function:
Mish
,Swish
,ESwish
,Mila
- Norm:
BatchNorm2d
,InstanceNorm2d
Supported Architectures:
- Densenet
- Deep Aggregation Layer
Ultilities:
Flatten
layerTedquential
: extension ofnn.Sequential
with configurable blocks and skip connections:dense
andresidual