Pytorch

Image data를 바탕으로 모델을 구현하고 정리합니다.

베이스가 되는 모델부터 최신 모델까지 구조를 공부하는 것을 목표로 합니다. (2022년도 업로드 예정)

Classification

  • VGGNet (2014)

    • Very Deep Convolutional Networks for Large-Scale Image Recognition. Karen Simonyan, Andrew Zisserman
  • GoogLeNet (2014)

    • Going Deeper with Convolutions Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
  • ResNet (2015)

    • Deep Residual Learning for Image Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
  • DenseNet (2016)

    • Densely Connected Convolutional Networks Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger
  • Xception (2016)

    • Xception: Deep Learning with Depthwise Separable Convolutions François Chollet
  • ResNeXt (2017)

    • Aggregated Residual Transformations for Deep Neural Networks Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He
  • SEResNet (2017)

    • Hu, Jie and Shen, Li and Albanie, Samuel and Sun, Gang and Wu, Enhua

Generative Model

Model Summarize Table

ConvNet Dataset Published In
VGGNet STL10 ICLR2015
GoogleNet STL10 CVPR2015
ResNet STL10 CVPR2015
DenseNet - ECCV2017
ResNeXt CIFAR10 CVPR2017
SEResNet - CVPR2018

Table of Contents

Computer Vision

Classification

Self-Supervised Learning

Image Denoising

Segmentation

Object Detection

Knowledge Distillation

Retrieval

OCR

Augmentation

Clustering

Depth Estimation

Attribution Methods

Optimizer

Adepter

Generative Models

Adversarial Attacks

Adversarial Detection

Anomaly Detection

Natural Language Processing

Classification

Generation

Question Answering

Pretrained Language Model

Named Entity Recognition

Natural Language Inference

Table MRC

Tutorial

Tabular Data

Classification

Recommendation

Anomaly Detection

Time-Series

Anomaly Detection

Classification

Forecasting

Reinforcement Learning

Audio Data

Recognition

Multi-modality

Vision-Langauge

Extra

Pytorch Accelerator