Our work
This is the project of Deep Learning for Artificial Intelligence course of the MATT Master's degree at Universitat Politècnica de Catalunya carried out by 4 students. Our work is described in this github pages.
The aim of this project was to understand how CycleGANs networks work, and we did so by creating a naive model reduction called mini-cyclegan and applying the original model to a new task.
The original readme is attached below:
CycleGAN and pix2pix in PyTorch
We provide PyTorch implementations for both unpaired and paired image-to-image translation.
The code was written by Jun-Yan Zhu and Taesung Park, and supported by Tongzhou Wang.
This PyTorch implementation produces results comparable to or better than our original Torch software. If you would like to reproduce the same results as in the papers, check out the original CycleGAN Torch and pix2pix Torch code
Note: The current software works well with PyTorch 0.4+. Check out the older branch that supports PyTorch 0.1-0.3.
You may find useful information in training/test tips and frequently asked questions.
CycleGAN: Project | Paper | Torch
Pix2pix: Project | Paper | Torch
EdgesCats Demo | pix2pix-tensorflow | by Christopher Hesse
If you use this code for your research, please cite:
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks Jun-Yan Zhu*, Taesung Park*, Phillip Isola, Alexei A. Efros In ICCV 2017. (* equal contributions) [Bibtex]
Image-to-Image Translation with Conditional Adversarial Networks Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros In CVPR 2017. [Bibtex]
Course
CycleGAN course assignment code and handout designed by Prof. Roger Grosse for CSC321 "Intro to Neural Networks and Machine Learning" at University of Toronto. Please contact the instructor if you would like to adopt it in your course.
Other implementations
CycleGAN
[Tensorflow] (by Harry Yang), [Tensorflow] (by Archit Rathore), [Tensorflow] (by Van Huy), [Tensorflow] (by Xiaowei Hu), [Tensorflow-simple] (by Zhenliang He), [TensorLayer] (by luoxier), [Chainer] (by Yanghua Jin), [Minimal PyTorch] (by yunjey), [Mxnet] (by Ldpe2G), [lasagne/keras] (by tjwei)
pix2pix
[Tensorflow] (by Christopher Hesse), [Tensorflow] (by Eyyüb Sariu), [Tensorflow (face2face)] (by Dat Tran), [Tensorflow (film)] (by Arthur Juliani), [Tensorflow (zi2zi)] (by Yuchen Tian), [Chainer] (by mattya), [tf/torch/keras/lasagne] (by tjwei), [Pytorch] (by taey16)
Prerequisites
- Linux or macOS
- Python 2 or 3
- CPU or NVIDIA GPU + CUDA CuDNN
Getting Started
Installation
- Clone this repo:
git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
cd pytorch-CycleGAN-and-pix2pix
- Install PyTorch 0.4+ and torchvision from http://pytorch.org and other dependencies (e.g., visdom and dominate). You can install all the dependencies by
pip install -r requirements.txt
- For Conda users, we include a script
./scripts/conda_deps.sh
to install PyTorch and other libraries.
CycleGAN train/test
- Download a CycleGAN dataset (e.g. maps):
bash ./datasets/download_cyclegan_dataset.sh maps
- Train a model:
#!./scripts/train_cyclegan.sh
python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan
-
To view training results and loss plots, run
python -m visdom.server
and click the URL http://localhost:8097. To see more intermediate results, check out./checkpoints/maps_cyclegan/web/index.html
. -
Test the model:
#!./scripts/test_cyclegan.sh
python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan
- The test results will be saved to a html file here:
./results/maps_cyclegan/latest_test/index.html
.
pix2pix train/test
- Download a pix2pix dataset (e.g.facades):
bash ./datasets/download_pix2pix_dataset.sh facades
- Train a model:
#!./scripts/train_pix2pix.sh
python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA
-
To view training results and loss plots, run
python -m visdom.server
and click the URL http://localhost:8097. To see more intermediate results, check out./checkpoints/facades_pix2pix/web/index.html
. -
Test the model (
bash ./scripts/test_pix2pix.sh
):
#!./scripts/test_pix2pix.sh
python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA
- The test results will be saved to a html file here:
./results/facades_pix2pix/test_latest/index.html
. You can find more scripts atscripts
directory.
Apply a pre-trained model (CycleGAN)
- You can download a pretrained model (e.g. horse2zebra) with the following script:
bash ./scripts/download_cyclegan_model.sh horse2zebra
- The pretrained model is saved at
./checkpoints/{name}_pretrained/latest_net_G.pth
. Check here for all the available CycleGAN models. - To test the model, you also need to download the horse2zebra dataset:
bash ./datasets/download_cyclegan_dataset.sh horse2zebra
- Then generate the results using
python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout
-
The option
--model test
is used for generating results of CycleGAN only for one side. This option will automatically set--dataset_mode single
, which only loads the images from one set. On the contrary, using--model cycle_gan
requires loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at./results/
. Use--results_dir {directory_path_to_save_result}
to specify the results directory. -
For your own experiments, you might want to specify
--netG
,--norm
,--no_dropout
to match the generator architecture of the trained model.
Apply a pre-trained model (pix2pix)
Download a pre-trained model with ./scripts/download_pix2pix_model.sh
.
- Check here for all the available pix2pix models. For example, if you would like to download label2photo model on the Facades dataset,
bash ./scripts/download_pix2pix_model.sh facades_label2photo
- Download the pix2pix facades datasets:
bash ./datasets/download_pix2pix_dataset.sh facades
- Then generate the results using
python test.py --dataroot ./datasets/facades/ --direction BtoA --model pix2pix --name facades_label2photo_pretrained
-
Note that we specified
--direction BtoA
as Facades dataset's A to B direction is photos to labels. -
If you would like to apply a pre-trained model to a collection of input images (rather than image pairs), please use
--model test
option. See./scripts/test_single.sh
for how to apply a model to Facade label maps (stored in the directoryfacades/testB
). -
See a list of currently available models at
./scripts/download_pix2pix_model.sh
Datasets
Download pix2pix/CycleGAN datasets and create your own datasets.
Training/Test Tips
Best practice for training and testing your models.
Frequently Asked Questions
Before you post a new question, please first look at the above Q & A and existing GitHub issues.
Pull Request
You are always welcome to contribute to this repository by sending a pull request.
Please run python ./scripts/test_before_push.py
before you commit the code.
Citation
If you use this code for your research, please cite our papers.
@inproceedings{CycleGAN2017,
title={Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkss},
author={Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
booktitle={Computer Vision (ICCV), 2017 IEEE International Conference on},
year={2017}
}
@inproceedings{isola2017image,
title={Image-to-Image Translation with Conditional Adversarial Networks},
author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A},
booktitle={Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on},
year={2017}
}
Related Projects
CycleGAN-Torch | pix2pix-Torch | pix2pixHD | iGAN | BicycleGAN
Cat Paper Collection
If you love cats, and love reading cool graphics, vision, and learning papers, please check out the Cat Paper Collection.
Acknowledgments
Our code is inspired by pytorch-DCGAN.