Elasticsearch Index for the The Movie Database.
With Docker installed, build the containers as below. You only need to do this once.
cd es-docker
docker build --tag=elasticsearch-tlre .
cd ../kb-docker
docker build --tag=kibana-tlre .
docker-compose up
Browse to http://localhost:9200 and http://localhost:5601 to confirm ES / Kibana running
- Download Elasticsearch 6.4.1
- Unzip to where you'd like to run Elasticsearch
- Add the following to config/elasticsearch.yml
http.cors.allow-origin: "/https?:\\/\\/(.*?\\.)?(quepid\\.com|splainer\\.io)/"
http.cors.enabled: true
indices.query.bool.max_clause_count: 10240
- Install the Elasticsearch LTR plugin for 6.4.1:
./bin/elasticsearch-plugin install -b http://es-learn-to-rank.labs.o19s.com/ltr-1.1.0-es6.4.1.zip
- Run Elasticsearch
./bin/elasticsearch
- In your browser, navigate to "http://localhost:9200" to confirm Elasticsearch is running
-
Download Kibana 6.4.1
-
Unzip to where you'd like to run Kibana
-
Install the Kibana Analyze Plugin
./bin/kibana-plugin install https://github.com/johtani/analyze-api-ui-plugin/releases/download/6.4.1/analyze-api-ui-plugin-6.4.1.zip
- Run Kibana
./bin/kibana
- In your browser, navigate to "http://localhost:5601" to confirm Kibana is running with the Analyze plugin included
Once installed, grab TMDB data and index into Elasticsearch
- Download tmdb.json
- Install Python 3.6 and the Python elasticsearch Python libraries library
- Run
python indexTmdb.py
to index movies
Navigate here and confirm you get results.