團隊成員: 張智星教授、戚得郁、張秋霞、楊德倫
- Step 1: PyTorch (GPU 版) 參考連結
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
- Step 2: SimpleTransformers 參考連結
pip install simpletransformers
- Step 3: matplotlib
pip install matplotlib
- Optional: opencc 與 flask
pip install opencc flask
- app.py: Flask 的 app.py
- s2t.py: 簡轉繁體 (透過 OpenCC)
- train.py: 訓練模型
- predict.py: 人工評估成效
- checkGPU.py: 確認電腦環境是否擁有 GPU
- plot.py: 基本 plot 輸出/檢視
- example.py: 測試語法用的程式檔
- check.py: 檢查關鍵字的數量
- convert.py: 將夥伴的整理好的資料,轉換成訓練資料
- web_scraper_kingnet.py: 取得 KingNet 網站的衛教資訊
labels = [
"O",
"B-BODY","I-BODY",
"B-CHEM","I-CHEM",
"B-DISE","I-DISE",
"B-DRUG","I-DRUG",
"B-EXAM","I-EXAM",
"B-INST","I-INST",
"B-SUPP","I-SUPP",
"B-SYMP","I-SYMP",
"B-TIME","I-TIME",
"B-TREAT","I-TREAT"
]
- 桌機 (主要訓練用)
- GPU: 1080 Gaming 8G
- 筆電 (測試訓練程式用)
- GPU: 2070 Max-Q Design
- train.json、test.json
- ccks2017.json、ccks2018.json (由 秋霞、得郁 提供)
- batch size: 64
- epochs: 30