/WeightNet

Primary LanguagePythonMIT LicenseMIT

This repository provides MegEngine implementation for "WeightNet: Revisiting the Design Space of Weight Network".

Requirement

Citation

If you use these models in your research, please cite:

@inproceedings{ma2020weightnet, 
            title={WeightNet: Revisiting the Design Space of Weight Networks},  
            author={Ma, Ningning and Zhang, Xiangyu and Huang, Jiawei and Sun, Jian},  
            booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},  
            year={2020} 
}

Usage

Train:

    python3 train.py --dataset-dir=/path/to/imagenet

Eval:

    python3 test.py --data=/path/to/imagenet --model /path/to/model --ngpus 1

Inference:

    python3 inference.py --model /path/to/model --image /path/to/image.jpg

Trained Models

  • OneDrive download: Link

Results

  • Comparison under the same #Params and the same FLOPs.
Model #Params. FLOPs Top-1 err.
ShuffleNetV2 (0.5×) 1.4M 41M 39.7
+ WeightNet (1×) 1.5M 41M 36.7
ShuffleNetV2 (1.0×) 2.2M 138M 30.9
+ WeightNet (1×) 2.4M 139M 28.8
ShuffleNetV2 (1.5×) 3.5M 299M 27.4
+ WeightNet (1×) 3.9M 301M 25.6
ShuffleNetV2 (2.0×) 5.5M 557M 25.5
+ WeightNet (1×) 6.1M 562M 24.1
  • Comparison under the same FLOPs.
Model #Params. FLOPs Top-1 err.
ShuffleNetV2 (0.5×) 1.4M 41M 39.7
+ WeightNet (8×) 2.7M 42M 34.0
ShuffleNetV2 (1.0×) 2.2M 138M 30.9
+ WeightNet (4×) 5.1M 141M 27.6
ShuffleNetV2 (1.5×) 3.5M 299M 27.4
+ WeightNet (4×) 9.6M 307M 25.0
ShuffleNetV2 (2.0×) 5.5M 557M 25.5
+ WeightNet (4×) 18.1M 573M 23.5