/Time-Series-Classification

Homework 2 for the Deep Learning course of the MSc in Mathematical Engineering @ Polimi (A.Y. 2022-2023).

Primary LanguagePython

Time Series Classification

This project was developed for the course of Artificial Neural Networks and Deep Learning for the MSc. in Mathematical Engineering at Politecnico di Milano, A.Y. 2022/2023.

Description

.
├── README.md
├── misc
│   ├── report_material
│   ├── submission_template
│   │   ├── metadata
│   │   ├── model.py
│   │   ├── model_aug.py
│   │   └── scaler.gz
│   └── training_histories
├── notebook
│   ├── final_model.ipynb
│   ├── utils
│   │   ├── augmentation.py
│   │   ├── datasets.py
│   │   ├── dtw.py
│   │   ├── helper.py
│   │   ├── input_data.py
│   │   ├── models.py
│   │   ├── nemenyi.py
│   │   └── prototype_selection.py
│   ├── x_train.npy
│   └── y_train.npy
├── report
│   ├── bibliography.bib
│   ├── report.pdf
│   └── report.tex
└── requirements.txt

7 directories, 49 files

  • final_model.ipynb is the main file that performs training of all the models and produces all the output images.
  • report_material and training_histories are folders containing additional images, namely the plots of the different training histories of the various models.
  • submission_template contains the code used to submit the model in the competition.
  • x_train.npy and y_train.npy are the given dataset.
  • utils contains the code to perform data augmentation.
  • requirements.txt contains the necessary packages for the environment.

Authors

Output

Check out the final report.pdf.

License

GNU GPLv3