/MyWorkflow.jl

For those who want to try Julia

Primary LanguageJuliaMIT LicenseMIT

MyWorkflow

Build Status Stable Dev

  • An example of workflow using Docker and GitHub Actions

Have a try MyWorkflow.jl

  • MyWorkflow.jl master (nightly) Binder Julia v1.6.3

  • MyWorkflow.jl v0.27.0 (stable) Binder Julia v1.6.3

  • MyWorkflow.jl v0.25.0 (old) Binder Julia v1.6.2

Feature

  • This repository gives us some useful techniques such as:
    1. how to utilize Docker Docker Compose with your Julia workflow.
    2. how to customize Julia's system image via PackageCompiler.jl to reduce an overhead of package's loading time e.g. Plots.jl etc...
    3. how to share our work on the Internet. Check our repository on Binder from Binder
    4. how to use GitHub actions as a CI functionality.
    5. how to communicate between a Docker container and Juno/Atom

Directory Structure

$ tree .
.
├── Dockerfile
├── LICENSE
├── Makefile
├── Project.toml
├── README.md
├── binder
│   └── Dockerfile
├── docker-compose.yml
├── docs
│   ├── Project.toml
│   ├── make.jl
│   └── src
│       ├── assets
│       │   ├── lab.png
│       │   ├── open_notebook_on_jupyterlab.png
│       │   ├── port9999.png
│       │   └── theorem.css
│       ├── example.md
│       ├── figures
│       ├── index.md
│       ├── math.md
│       ├── myworkflow.md
│       └── weavesample.jmd
├── gitpod
│   └── Dockerfile
├── jupytext.toml
├── playground
│   ├── notebook
│   │   ├── Chisq.md
│   │   ├── Harris.md
│   │   ├── Rotation3D.md
│   │   ├── apply_PCA_to_MNIST.md
│   │   ├── box_and_ball_system.md
│   │   ├── clang.md
│   │   ├── convex_hull.md
│   │   ├── coordinate_system.md
│   │   ├── curve.md
│   │   ├── elastic_collision.md
│   │   ├── example.md
│   │   ├── fitting.md
│   │   ├── free_fall.md
│   │   ├── gradient_descent.md
│   │   ├── histogram_eq.md
│   │   ├── hop_step_jump.md
│   │   ├── image_filtering.md
│   │   ├── interact_sample.md
│   │   ├── iris.md
│   │   ├── jsxgraph_julia.md
│   │   ├── jsxgraph_with_rawJS.md
│   │   ├── jsxgraph_with_webio_jsexpr.md
│   │   ├── lazysets.md
│   │   ├── linear_regression.md
│   │   ├── n-Soliton.md
│   │   ├── ode.md
│   │   ├── plots_fill_example.md
│   │   ├── plots_sample.md
│   │   ├── pluto
│   │   │   └── sample.jl
│   │   ├── point_on_circle.md
│   │   ├── pyjulia.md
│   │   ├── pyplot.md
│   │   ├── rcall.md
│   │   ├── reuleaux_triangle.md
│   │   ├── seaborn.md
│   │   ├── simple_harmonic_motion.md
│   │   ├── staticarrays.md
│   │   ├── staticarrays_fieldvector.md
│   │   ├── tangent_vector.md
│   │   └── wav_example.md
│   └── test
│       └── runtests.jl
├── requirements.txt
├── src
│   └── MyWorkflow.jl
└── test
    └── runtests.jl

How to use

Prepare Environment

$ docker run --rm -it julia
# some staff happens ...
  • It will initialize a fresh Julia environment even if you do not have a Julia on your (host) machine.

Buiding Docker image

  • O.K. Let's build a Docker image for our purpose. Just run:
$ make build

which is exactly equivalent to the following procedure:

$ rm -f Manifest.toml
$ docker build -t myworkflojl .
$ docker-compose build
$ docker-compose run --rm julia julia --project=/work -e 'using Pkg; Pkg.instantiate()'

Tips for Windows Users

  • You can install make command via winget.
PS> # open powershell NOT `cmd.exe`
PS> winget install -e GnuWin32.Make

The make.exe lives in C:\Program Files (x86)\GnuWin32\bin\make.exe. Therefore please add it to your PATH environment variable. After that, if PS> Get-Command make works fine, you're good to go.

  • Or try the following procedure:
PS> Remove-Item -Path Manifest.toml -ErrorAction Ignore
PS> docker build -t myworkflowjl .
PS> docker-compose build
PS> docker-compose run --rm julia julia --project=/work -e 'using Pkg; Pkg.instantiate()'

Pull Docker image (Optional)

  • Running make build may take much time to build our Docker image. Please use make pull instead.
$ make pull

which is almost equivalent to:

$ rm -f Manifest.toml
$ docker pull myworkflowjl
$ docker-compose run --rm julia julia --project=/work -e 'using Pkg; Pkg.instantiate()'

Running Jupyter Notebook/JupyterLab

$ docker-compose up jupyter
myjupyter  |     To access the notebook, open this file in a browser:
myjupyter  |         file:///root/.local/share/jupyter/runtime/nbserver-1-open.html
myjupyter  |     Or copy and paste one of these URLs:
myjupyter  |         http://4a27c4a06b0f:8888/?token=xxxxxxxxxxxxxxxxxxxxxxx
myjupyter  |      or http://127.0.0.1:8888/?token=xxxxxxxxxxxxxxxxxxxxxxx

Then open your web browser and access to http://127.0.0.1:8888/?token=xxxxxxxxxxxxxxxxxxxxxxx.

You can also initialize JupyterLab as you like via

$ docker-compose up lab
  • You'll see a JupyterLab screen its theme is Monokai++ (This choice comes from my preference.) :D .

img

  • If you like to open experiments/notebook/<ournotebook>.jl, right click the file to select and Open with -> Notebook. You're good to go.

img

  • Note that since we adopt jupytext technology, we do not have to commit/push *.ipynb file. Namely, we can manage Jupyter Notebook as a normal source code.

  • Enjoy your Jupyter life.

Running Pluto

Pluto.jl is a lightweight reactive notebooks for Julia. Just run the following command:

using Docker Compose

$ docker-compose up pluto

Then, go to localhost:9999

From Jupyter Notebook/Lab

  • Run docker-compose up jupyter and then click New button on the top right of your browser. Then select Pluto Notebook.

image

Connect to docker container with Juno/Atom (For Linux or Mac users only)

  • We we will assume you've installed Juno.
  • Go to Open Settings -> Julia Client -> Julia Options -> Port for Communicating with the Julia process and set value from random to 9999.

imgs

  • To connect to Docker container, open your Atom editor and open command palette(via Cmd+shift+p or Ctrl+shift+p). Then select Julia Client Connect External Process. Finally again open command palette and select Julia Client: New Terminal. You'll see a terminal at the bottom of the Atom edetor's screen. After that, simply run make atom or
# For Mac user
$  docker run --rm -it --network=host -v ${PWD}:/work -w /work myworkflowjl julia -J/sysimages/atom.so --project=@. -L .atom/init_mac.jl
# For Linux user
$ docker run --rm -it --network=host -v ${PWD}:/work -w /work myworkflowjl julia -J/sysimages/atom.so --project=@. -L .atom/init_linux.jl

It will show Julia's REPL inside of the terminal. pwd() should output "/work", otherwise (e.g. ~/work/MyWorkflow.jl) you're something wrong (opening your Julia session on your host).

julia> pwd()
"/work"
  • Since our Docker image adopts sysimage which include precompile statements related to Atom or Plots.jl generated by PackageCompiler.jl. You'll find the speed of using Plots; plot(sin) is much extremely faster than that of runs on Julia session on your host.
# our sysimage
julia> @time begin using Plots; plot(sin) end
  0.022140 seconds (38.23 k allocations: 1.731 MiB) # <- Fast
# normal Julia
julia> @time begin using Plots; plot(sin) end
 14.006315 seconds (42.16 M allocations: 2.131 GiB, 3.86% gc time) #<- So slow ...

Create docs/test

By running make web, you can create documentation files for our packages MyWorkflow.jl, namely:

$ make web

julia --project=docs -e '\
    using Pkg;\
    Pkg.develop(PackageSpec(path=pwd()));\
    Pkg.instantiate();\
    include("docs/make.jl");\
    '
Path `~/work/MyWorkflow.jl` exists and looks like the correct package. Using existing path.
  Resolving package versions...
No Changes to `~/work/MyWorkflow.jl/docs/Project.toml`
No Changes to `~/work/MyWorkflow.jl/docs/Manifest.toml`
┌ Info: Weaving chunk 1 from line 25
└   progress = 0.0
┌ Info: Weaved all chunks
└   progress = 1
[ Info: Weaved to /Users/terasaki/work/MyWorkflow.jl/docs/src/weavesample.md
[ Info: SetupBuildDirectory: setting up build directory.
[ Info: Doctest: running doctests.
[ Info: ExpandTemplates: expanding markdown templates.
[ Info: CrossReferences: building cross-references.
[ Info: CheckDocument: running document checks.
[ Info: Populate: populating indices.
[ Info: RenderDocument: rendering document.
[ Info: HTMLWriter: rendering HTML pages.
┌ Warning: Documenter could not auto-detect the building environment Skipping deployment.
└ @ Documenter ~/.julia/packages/Documenter/3Y8Kg/src/deployconfig.jl:75
python3 -m http.server --bind 0.0.0.0 --directory docs/build
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...
  • It is good idea to run using doctest:
$ julia --project=@.
julia> 
julia> using MyWorkflow, Documenter; DocMeta.setdocmeta!(MyWorkflow, :DocTestSetup, :(using MyWorkflow); recursive=true) ;doctest(MyWorkflow)

[ Info: SetupBuildDirectory: setting up build directory.
[ Info: Doctest: running doctests.
[ Info: Skipped ExpandTemplates step (doctest only).
[ Info: Skipped CrossReferences step (doctest only).
[ Info: Skipped CheckDocument step (doctest only).
[ Info: Skipped Populate step (doctest only).
[ Info: Skipped RenderDocument step (doctest only).
Test Summary:        | Pass  Total
Doctests: MyWorkflow |    1      1
Test.DefaultTestSet("Doctests: MyWorkflow", Any[], 1, false)