/AirNet-PyTorch

Implementation of the paper ''Attention Inspiring Receptive-fields Network''

Primary LanguagePython

AirNet-PyTorch

Implementation of the paper ''Attention Inspiring Receptive-fields Network'' (under review), which contains the evaluation code and trained models. By:

Lu Yang, Qing Song, Yingqi Wu and Mengjie Hu

Install

Evaluation

  • Download the trained models, and move them to the ckpts folder.
  • Run the eval.py:
    python eval.py --gpu_id 0 --arch airnet50_1x64d --model_weights ./ckpts/air50_1x64d.pth
    
  • The results will be consistent with the paper.

Results

ImageNet1k

Single-crop (224x224) validation error rate is reported.

Network                 Flops (G) Params (M) Top-1 Error (%) Top-5 Error (%) Download
AirNet50-1x64d (r=16) 4.36 25.7 22.11 6.18 GoogleDrive
AirNet50-1x64d (r=2) 4.72 27.4 21.83 5.89 GoogleDrive
AirNeXt50-32x4d 5.29 25.5 20.87 5.52 GoogleDrive

Other Resources (from DPNs)

ImageNet-1k Trainig/Validation List:

ImageNet-1k category name mapping table: