/cvzone

This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

Primary LanguagePythonMIT LicenseMIT

CVZone

Downloads Downloads Downloads

This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

Installation

You can simply use pip to install the latest version of cvzone.

pip install cvzone


60 FPS Face Detection


from cvzone.FaceDetectionModule import FaceDetector
import cv2

cap = cv2.VideoCapture(0)
detector = FaceDetector()

while True:
    success, img = cap.read()
    img, bboxs = detector.findFaces(img)

    if bboxs:
        # bboxInfo - "id","bbox","score","center"
        center = bboxs[0]["center"]
        cv2.circle(img, center, 5, (255, 0, 255), cv2.FILLED)

    cv2.imshow("Image", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()


Hand Tracking


Basic Code Example

from cvzone.HandTrackingModule import HandDetector
import cv2

cap = cv2.VideoCapture(0)
detector = HandDetector(detectionCon=0.8, maxHands=2)
while True:
    # Get image frame
    success, img = cap.read()
    # Find the hand and its landmarks
    hands, img = detector.findHands(img)  # with draw
    # hands = detector.findHands(img, draw=False)  # without draw

    if hands:
        # Hand 1
        hand1 = hands[0]
        lmList1 = hand1["lmList"]  # List of 21 Landmark points
        bbox1 = hand1["bbox"]  # Bounding box info x,y,w,h
        centerPoint1 = hand1['center']  # center of the hand cx,cy
        handType1 = hand1["type"]  # Handtype Left or Right

        fingers1 = detector.fingersUp(hand1)

        if len(hands) == 2:
            # Hand 2
            hand2 = hands[1]
            lmList2 = hand2["lmList"]  # List of 21 Landmark points
            bbox2 = hand2["bbox"]  # Bounding box info x,y,w,h
            centerPoint2 = hand2['center']  # center of the hand cx,cy
            handType2 = hand2["type"]  # Hand Type "Left" or "Right"

            fingers2 = detector.fingersUp(hand2)

            # Find Distance between two Landmarks. Could be same hand or different hands
            length, info, img = detector.findDistance(lmList1[8], lmList2[8], img)  # with draw
            # length, info = detector.findDistance(lmList1[8], lmList2[8])  # with draw
    # Display
    cv2.imshow("Image", img)
    cv2.waitKey(1)
cap.release()
cv2.destroyAllWindows()

Pose Estimation


from cvzone.PoseModule import PoseDetector
import cv2

cap = cv2.VideoCapture(0)
detector = PoseDetector()
while True:
    success, img = cap.read()
    img = detector.findPose(img)
    lmList, bboxInfo = detector.findPosition(img, bboxWithHands=False)
    if bboxInfo:
        center = bboxInfo["center"]
        cv2.circle(img, center, 5, (255, 0, 255), cv2.FILLED)

    cv2.imshow("Image", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()


Face Mesh Detection


from cvzone.FaceMeshModule import FaceMeshDetector
import cv2

cap = cv2.VideoCapture(0)
detector = FaceMeshDetector(maxFaces=2)
while True:
    success, img = cap.read()
    img, faces = detector.findFaceMesh(img)
    if faces:
        print(faces[0])
    cv2.imshow("Image", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

Stack Images


import cvzone
import cv2

cap = cv2.VideoCapture(0)
cap.set(3, 1280)
cap.set(4, 720)

while True:
    success, img = cap.read()
    imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    imgList = [img, img, imgGray, img, imgGray, img,imgGray, img, img]
    stackedImg = cvzone.stackImages(imgList, 3, 0.4)

    cv2.imshow("stackedImg", stackedImg)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()


Corner Rectangle



import cvzone
from cvzone.HandTrackingModule import HandDetector
import cv2

cap = cv2.VideoCapture(0)
detector = HandDetector()

while True:
    # Get image frame
    success, img = cap.read()

    # Find the hand and its landmarks
    img = detector.findHands(img, draw=False)
    lmList, bbox = detector.findPosition(img, draw=False)
    if bbox:
        # Draw  Corner Rectangle
        cvzone.cornerRect(img, bbox)

    # Display
    cv2.imshow("Image", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

FPS


import cvzone
import cv2

fpsReader = cvzone.FPS()
cap = cv2.VideoCapture(0)
cap.set(3, 1280)
cap.set(4, 720)

while True:
    success, img = cap.read()
    fps, img = fpsReader.update(img,pos=(50,80),color=(0,255,0),scale=5,thickness=5)
    cv2.imshow("Image", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()