N.B.
This README contains the docstrings and doctests from the code by means of extractly
and the following code examples are therefore verified with ExUnit
doctests.
- Table Of Content
- Options
- Contributing
- Author
Functional (with the exception of reading input files with Earmark.File
) interface to the CLI
returning the device and the string to be output.
This is a superset of the options that need to be passed into EarmarkParser.as_ast/2
The following options are proper to Earmark
only and therefore explained in detail
-
compact_output
: boolean indicating to avoid indentation and minimize whitespace -
eex
: Allows usage of anEEx
template to be expanded to markdown before conversion -
file
: Name of file passed in from the CLI -
line
: 1 but might be set to an offset for better error messages in some integration cases -
smartypants
: boolean use Smarty Pants in the output -
ignore_strings
,postprocessor
andregistered_processors
: processors that modify the AST returned fromEarmarkParser.as_ast/
2
before rendering (post
because preprocessing is done on the markdown, e.g.eex
) Refer to the moduledoc of Earmark.Transform
for details
All other options are passed onto EarmarkParser.as_ast/2
Make a legal and normalized Option struct from, maps or keyword lists
Without a param or an empty input we just get a new Option struct
iex(1)> { make_options(), make_options(%{}) }
{ {:ok, %Earmark.Options{}}, {:ok, %Earmark.Options{}} }
The same holds for the bang version of course
iex(2)> { make_options!(), make_options!(%{}) }
{ %Earmark.Options{}, %Earmark.Options{} }
We check for unallowed keys
iex(3)> make_options(no_such_option: true)
{:error, [{:warning, 0, "Unrecognized option no_such_option: true"}]}
Of course we do not let our users discover one error after another
iex(4)> make_options(no_such_option: true, gfm: false, still_not_an_option: 42)
{:error, [{:warning, 0, "Unrecognized option no_such_option: true"}, {:warning, 0, "Unrecognized option still_not_an_option: 42"}]}
And the bang version will raise an Earmark.Error
as excepted (sic)
iex(5)> make_options!(no_such_option: true, gfm: false, still_not_an_option: 42)
** (Earmark.Error) [{:warning, 0, "Unrecognized option no_such_option: true"}, {:warning, 0, "Unrecognized option still_not_an_option: 42"}]
Allows to compute the path of a relative file name (starting with "./"
) from the file in options
and return an updated options struct
iex(6)> options = %Earmark.Options{file: "some/path/xxx.md"}
...(6)> options_ = relative_filename(options, "./local.md")
...(6)> options_.file
"some/path/local.md"
For your convenience you can just use a keyword list
iex(7)> options = relative_filename([file: "some/path/_.md", breaks: true], "./local.md")
...(7)> {options.file, options.breaks}
{"some/path/local.md", true}
If the filename is not absolute it just replaces the file in options
iex(8)> options = %Earmark.Options{file: "some/path/xxx.md"}
...(8)> options_ = relative_filename(options, "local.md")
...(8)> options_.file
"local.md"
And there is a special case when processing stdin, meaning that file: nil
we replace file
verbatim in that case
iex(9)> options = %Earmark.Options{}
...(9)> options_ = relative_filename(options, "./local.md")
...(9)> options_.file
"./local.md"
A convenience constructor
All public functions that are internal to Earmark, so that only external API
functions are public in Earmark
A wrapper to extract the AST from a call to EarmarkParser.as_ast
if a tuple {:ok, result, []}
is returned,
raise errors otherwise
iex(1)> as_ast!(["Hello %% annotated"], annotations: "%%")
[{"p", [], ["Hello "], %{annotation: "%% annotated"}}]
iex(2)> as_ast!("===")
** (Earmark.Error) [{:warning, 1, "Unexpected line ==="}]
This is a convenience method to read a file or pass it to EEx.eval_file
if its name
ends in .eex
The returned string is then passed to as_html
this is used in the escript now and allows
for a simple inclusion mechanism, as a matter of fact an include
function is passed
A utility function that will be passed as a partial capture to EEx.eval_file
by
providing a value for the options
parameter
EEx.eval(..., include: &include(&1, options))
thusly allowing
<%= include.(some file) %>
where some file
can be a relative path starting with "./"
Here is an example using these fixtures
iex(3)> include("./include/basic.md.eex", file: "test/fixtures/does_not_matter")
"# Headline Level 1\n"
And here is how it is used inside a template
iex(4)> options = [file: "test/fixtures/does_not_matter"]
...(4)> EEx.eval_string(~s{<%= include.("./include/basic.md.eex") %>}, include: &include(&1, options))
"# Headline Level 1\n"
For the convenience of processing the output of EarmarkParser.as_ast
we expose two mappers.
takes a function that will be called for each node of the AST, where a leaf node is either a quadruple of {tag, attributes, children, meta}
like {"code", [{"class", "inline"}], ["some code"], %{}}
or a text leaf like "some code"
The result of the function call must be:
-
for nodes → a quadruple. The quadruple replace the node. If the children are not intended to be modified, that quadruple element may be
nil
. -
for strings → strings
A third parameter ignore_strings
which defaults to false
can be used to avoid invocation of the mapper
function for text nodes
As an example let us transform an ast to have symbol keys
iex(1)> input = [
...(1)> {"h1", [], ["Hello"], %{title: true}},
...(1)> {"ul", [], [{"li", [], ["alpha"], %{}}, {"li", [], ["beta"], %{}}], %{}}]
...(1)> map_ast(input, fn {t, a, _, m} -> {String.to_atom(t), a, nil, m} end, true)
[ {:h1, [], ["Hello"], %{title: true}},
{:ul, [], [{:li, [], ["alpha"], %{}}, {:li, [], ["beta"], %{}}], %{}} ]
N.B. If this returning convention is not respected map_ast
might not complain, but the resulting
transformation might not be suitable for Earmark.Transform.transform
anymore. From this follows that
any function passed in as value of the postprocessor:
option must obey to these conventions.
this is like map_ast
but like a reducer an accumulator can also be passed through.
For that reason the function is called with two arguments, the first element being the same value
as in map_ast
and the second the accumulator. The return values need to be equally augmented
tuples.
A simple example, annotating traversal order in the meta map's :count
key, as we are not
interested in text nodes we use the fourth parameter ignore_strings
which defaults to false
iex(2)> input = [
...(2)> {"ul", [], [{"li", [], ["one"], %{}}, {"li", [], ["two"], %{}}], %{}},
...(2)> {"p", [], ["hello"], %{}}]
...(2)> counter = fn {t, a, _, m}, c -> {{t, a, nil, Map.put(m, :count, c)}, c+1} end
...(2)> map_ast_with(input, 0, counter, true)
{[ {"ul", [], [{"li", [], ["one"], %{count: 1}}, {"li", [], ["two"], %{count: 2}}], %{count: 0}},
{"p", [], ["hello"], %{count: 3}}], 4}
These can be declared in the fields postprocessor
and registered_processors
in the Options
struct,
postprocessor
is prepened to registered_processors
and they are all applied to non string nodes (that
is the quadtuples of the AST which are of the form {tag, atts, content, meta}
All postprocessors can just be functions on nodes or a TagSpecificProcessors
struct which will group
function applications depending on tags, as a convienience tuples of the form {tag, function}
will be
transformed into a TagSpecificProcessors
struct.
iex(3)> add_class1 = &Earmark.AstTools.merge_atts_in_node(&1, class: "class1")
...(3)> m1 = Earmark.Options.make_options!(postprocessor: add_class1) |> make_postprocessor()
...(3)> m1.({"a", [], nil, nil})
{"a", [{"class", "class1"}], nil, nil}
We can also use the registered_processors
field:
iex(4)> add_class1 = &Earmark.AstTools.merge_atts_in_node(&1, class: "class1")
...(4)> m2 = Earmark.Options.make_options!(registered_processors: add_class1) |> make_postprocessor()
...(4)> m2.({"a", [], nil, nil})
{"a", [{"class", "class1"}], nil, nil}
Knowing that values on the same attributes are added onto the front the following doctest demonstrates the order in which the processors are executed
iex(5)> add_class1 = &Earmark.AstTools.merge_atts_in_node(&1, class: "class1")
...(5)> add_class2 = &Earmark.AstTools.merge_atts_in_node(&1, class: "class2")
...(5)> add_class3 = &Earmark.AstTools.merge_atts_in_node(&1, class: "class3")
...(5)> m = Earmark.Options.make_options!(postprocessor: add_class1, registered_processors: [add_class2, {"a", add_class3}])
...(5)> |> make_postprocessor()
...(5)> [{"a", [{"class", "link"}], nil, nil}, {"b", [], nil, nil}]
...(5)> |> Enum.map(m)
[{"a", [{"class", "class3 class2 class1 link"}], nil, nil}, {"b", [{"class", "class2 class1"}], nil, nil}]
We can see that the tuple form has been transformed into a tag specific transformation only as a matter of fact, the explicit definition would be:
iex(6)> m = make_postprocessor(
...(6)> %Earmark.Options{
...(6)> registered_processors:
...(6)> [Earmark.TagSpecificProcessors.new({"a", &Earmark.AstTools.merge_atts_in_node(&1, target: "_blank")})]})
...(6)> [{"a", [{"href", "url"}], nil, nil}, {"b", [], nil, nil}]
...(6)> |> Enum.map(m)
[{"a", [{"href", "url"}, {"target", "_blank"}], nil, nil}, {"b", [], nil, nil}]
We can also define a tag specific transformer in one step, which might (or might not) solve potential performance issues when running too many processors
iex(7)> add_class4 = &Earmark.AstTools.merge_atts_in_node(&1, class: "class4")
...(7)> add_class5 = &Earmark.AstTools.merge_atts_in_node(&1, class: "class5")
...(7)> add_class6 = &Earmark.AstTools.merge_atts_in_node(&1, class: "class6")
...(7)> tsp = Earmark.TagSpecificProcessors.new([{"a", add_class5}, {"b", add_class5}])
...(7)> m = Earmark.Options.make_options!(
...(7)> postprocessor: add_class4,
...(7)> registered_processors: [tsp, add_class6])
...(7)> |> make_postprocessor()
...(7)> [{"a", [], nil, nil}, {"c", [], nil, nil}, {"b", [], nil, nil}]
...(7)> |> Enum.map(m)
[{"a", [{"class", "class6 class5 class4"}], nil, nil}, {"c", [{"class", "class6 class4"}], nil, nil}, {"b", [{"class", "class6 class5 class4"}], nil, nil}]
Of course the mechanics shown above is hidden if all we want is to trigger the postprocessor chain in Earmark.as_html
, here goes a typical
example
iex(8)> add_target = fn node -> # This will only be applied to nodes as it will become a TagSpecificProcessors
...(8)> if Regex.match?(~r{\.x\.com\z}, Earmark.AstTools.find_att_in_node(node, "href", "")), do:
...(8)> Earmark.AstTools.merge_atts_in_node(node, target: "_blank"), else: node end
...(8)> options = [
...(8)> registered_processors: [{"a", add_target}, {"p", &Earmark.AstTools.merge_atts_in_node(&1, class: "example")}]]
...(8)> markdown = [
...(8)> "http://hello.x.com",
...(8)> "",
...(8)> "[some](url)",
...(8)> ]
...(8)> Earmark.as_html!(markdown, options)
"<p class=\"example\">\n<a href=\"http://hello.x.com\" target=\"_blank\">http://hello.x.com</a></p>\n<p class=\"example\">\n<a href=\"url\">some</a></p>\n"
This would be done as follows
Earmark.as_html!(markdown, registered_processors: {"a", my_function_that_is_invoked_only_with_a_nodes})
N.B. Annotation are an experimental feature in 1.4.16-pre and are documented here
By annotating our markdown source we can then influence the rendering. In this example we will just add some decoration
iex(9)> markdown = [ "A joke %% smile", "", "Charming %% in_love" ]
...(9)> add_smiley = fn {_, _, _, meta} = quad, _acc ->
...(9)> case Map.get(meta, :annotation) do
...(9)> "%% smile" -> {quad, "\u1F601"}
...(9)> "%% in_love" -> {quad, "\u1F60d"}
...(9)> _ -> {quad, nil}
...(9)> end
...(9)> text, nil -> {text, nil}
...(9)> text, ann -> {"#{text} #{ann}", nil}
...(9)> end
...(9)> Earmark.as_ast!(markdown, annotations: "%%") |> Earmark.Transform.map_ast_with(nil, add_smiley) |> Earmark.transform
"<p>\nA joke ὠ1</p>\n<p>\nCharming ὠd</p>\n"
Pull Requests are happily accepted.
Please be aware of one caveat when correcting/improving README.md
.
The README.md
is generated by Extractly
as mentioned above and therefore contributors shall not modify it directly, but
README.md.eex
and the imported docs instead.
Thank you all who have already helped with Earmark, your names are duly noted in RELEASE.md.
Copyright © 2014,5,6,7,8,9, 2020,1 Dave Thomas, The Pragmatic Programmers & Robert Dober @/+pragdave, dave@pragprog.com & robert.dober@gmail.com
Same as Elixir, which is Apache License v2.0. Please refer to LICENSE for details.