DriveLM: Driving with Graph Visual Question Answering
Download dataset HERE (serves as Official source for Autonomous Driving Challenge 2024
)
drivelm_nus_demo_v2_1.mp4
🔥 We instantiate datasets (DriveLM-Data) built upon nuScenes and CARLA, and propose a VLM-based baseline approach (DriveLM-Agent) for jointly performing Graph VQA and end-to-end driving.
🏁 DriveLM will serve as a main track in the CVPR 2024 Autonomous Driving Challenge
. For further details, please stay tuned!
- Highlights
- Getting Started
- Current Endeavors and Future Horizons
- News and TODO List
- DriveLM-Data
- License and Citation
- Other Resources
To get started with DriveLM:
- The advent of GPT-style multimodal models in real-world applications motivates the study of the role of language in driving.
- Date below reflects the arXiv submission date.
- If there is any missing work, please reach out to us!
DriveLM attempts to address some of the challenges faced by the community.
- Lack of data: DriveLM-Data serves as a comprehensive benchmark for driving with language.
- Embodiment: GVQA provides a potential direction for embodied applications of LLMs / VLMs.
- Closed-loop: DriveLM-CARLA attempts to explore closed-loop planning with language.
[2023/08/25]
DriveLM-nuScenes demo released.[2023/12/22]
DriveLM-nuScenes fullv1.0
and paper released.[Early 2024]
DriveLM-Agent inference code.Note:
We plan to release a simple, flexible training code that supports multi-view inputs as a starter kit for the AD challenge (stay tuned for details).
- DriveLM-Data
- DriveLM-nuScenes
- DriveLM-CARLA
- DriveLM-Metrics
- GPT-score
- DriveLM-Agent
- Inference code on DriveLM-nuScenes
- Inference code on DriveLM-CARLA
We facilitate the Perception, Prediction, Planning, Behavior, Motion
tasks with human-written reasoning logic as a connection between them. We propose the task of GVQA on the DriveLM-Data.
DriveLM-Data is the first language-driving dataset facilitating the full stack of driving tasks with graph-structured logical dependencies.
Links to details about GVQA task, Dataset Features, and Annotation.
All assets and code in this repository are under the Apache 2.0 license unless specified otherwise. The language data is under CC BY-NC-SA 4.0. Other datasets (including nuScenes) inherit their own distribution licenses. Please consider citing our paper and project if they help your research.
@article{sima2023drivelm,
title={DriveLM: Driving with Graph Visual Question Answering},
author={Sima, Chonghao and Renz, Katrin and Chitta, Kashyap and Chen, Li and Zhang, Hanxue and Xie, Chengen and Luo, Ping and Geiger, Andreas and Li, Hongyang},
journal={arXiv preprint arXiv:2312.14150},
year={2023}
}
@misc{contributors2023drivelmrepo,
title={DriveLM: Driving with Graph Visual Question Answering},
author={DriveLM contributors},
howpublished={\url{https://github.com/OpenDriveLab/DriveLM}},
year={2023}
}
OpenDriveLab
Autonomous Vision Group
- tuPlan garage | CARLA garage | Survey on E2EAD
- PlanT | KING | TransFuser | NEAT