/RDN-pytorch

PyTorch implementation of Residual Dense Network for Image Super-Resolution (CVPR 2018)

Primary LanguagePythonMIT LicenseMIT

RDN

This repository is implementation of the "Residual Dense Network for Image Super-Resolution".

Requirements

  • PyTorch 1.0.0
  • Numpy 1.15.4
  • Pillow 5.4.1
  • h5py 2.8.0
  • tqdm 4.30.0

Train

The DIV2K, Set5 dataset converted to HDF5 can be downloaded from the links below.

Dataset Scale Type Link
DIV2K 2 Train Download
DIV2K 3 Train Download
DIV2K 4 Train Download
Set5 2 Eval Download
Set5 3 Eval Download
Set5 4 Eval Download

Otherwise, you can use prepare.py to create custom dataset.

python train.py --train-file "BLAH_BLAH/DIV2K_x4.h5" \
                --eval-file "BLAH_BLAH/Set5_x4.h5" \
                --outputs-dir "BLAH_BLAH/outputs" \
                --scale 4 \
                --num-features 64 \
                --growth-rate 64 \
                --num-blocks 16 \
                --num-layers 8 \
                --lr 1e-4 \
                --batch-size 16 \
                --patch-size 32 \
                --num-epochs 800 \
                --num-workers 8 \
                --seed 123                

Test

Pre-trained weights can be downloaded from the links below.

Model Scale Link
RDN (D=16, C=8, G=64, G0=64) 2 Download
RDN (D=16, C=8, G=64, G0=64) 3 Download
RDN (D=16, C=8, G=64, G0=64) 4 Download

The results are stored in the same path as the query image.

python test.py --weights-file "BLAH_BLAH/rdn_x4.pth" \
               --image-file "data/119082.png" \
               --scale 4 \
               --num-features 64 \
               --growth-rate 64 \
               --num-blocks 16 \
               --num-layers 8

Results

PSNR was calculated on the Y channel.

Set5

Eval. Mat Scale RDN (Paper) RDN (Ours)
PSNR 2 38.24 38.18
PSNR 3 34.71 34.73
PSNR 4 32.47 32.40
Original BICUBIC x4 RDN x4 (25.08 dB)
Original BICUBIC x4 RDN x4 (32.98 dB)

Citation

@InProceedings{Lim_2017_CVPR_Workshops,
  author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu},
  title = {Enhanced Deep Residual Networks for Single Image Super-Resolution},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  month = {July},
  year = {2017}
}

@inproceedings{zhang2018residual,
    title={Residual Dense Network for Image Super-Resolution},
    author={Zhang, Yulun and Tian, Yapeng and Kong, Yu and Zhong, Bineng and Fu, Yun},
    booktitle={CVPR},
    year={2018}
}

@article{zhang2020rdnir,
    title={Residual Dense Network for Image Restoration},
    author={Zhang, Yulun and Tian, Yapeng and Kong, Yu and Zhong, Bineng and Fu, Yun},
    journal={TPAMI},
    year={2020}
}