/RNA-secondary-structure-prediction

Given a nucleic acid sequence of RNA, find a maximum matching of {A,U} or {C,G} base pairs without knots or sharp turns.

Primary LanguageC++

RNA secondary structure prediction

Problem: Given a nucleic acid sequence of RNA, find a maximum matching of ${A,U}$ or ${C,G} $ base pairs without knots or sharp turns.

This is a modern C++ implementation that employs (iterative) dynamic programming on intervals to find the cardinality of the maximum matching of base pairs as well as the base pairs in the matching.

View the report here.

Install Dependencies

To build the project you must have CMake installed.

To install python dependencies

pip install -r requirements.txt

Build Project

Configure:

cmake -DCMAKE_BUILD_TYPE=Release -S . -B build

Build:

cmake --build build --config Release

Build Documentation

To build the documentation you must have Doxygen installed.

cmake --build build --target docs

Output will be in docs/html.

Usage

./bin/app [inputfile]

Example:

./bin/app sample.txt

Note: inputfile may also be relative to ./data.

Input Format

Input must contain the description of a nucleic acid sequence of RNA in the following format.

The first and only line must contain a string $s$ $(s_i \in {A,C,G,U})$ — the nucleic acid sequence.

Output Format

The output will contain the description of the maximum matching.

The first line will contain a single integer $m$ — the cardinality of the maximum matching in the sequence. Each of the next $m$ lines will contain two integers — the indices of the base pairs in the matching.

Visualization

Python script to run the app against some input and plot a graph with matplotlib using the output.

cd scripts
./run.py [inputfile]

Note: inputfile may also be relative to ./data.

Testing

This project uses GoogleTest for its unit tests and GoogleBenchmark for benchmarking.

Testing RNA::Predictor::find_max_matching() against various cases:

cd build
ctest -R PredictorTests -j6

Benchmarking against varying input sizes:

./bin/bench --benchmark_counters_tabular=true
Benchmark output
2022-04-18T03:23:59+05:30
Running ./bin/bench
Run on (12 X 3000 MHz CPU s)
CPU Caches:
  L1 Data 32 KiB (x6)
  L1 Instruction 32 KiB (x6)
  L2 Unified 512 KiB (x6)
  L3 Unified 4096 KiB (x2)
Load Average: 0.91, 0.73, 0.65
***WARNING*** CPU scaling is enabled, the benchmark real time measurements may be noisy and will incur extra overhead.
-------------------------------------------------------------------
Benchmark              Time             CPU   Iterations          n
-------------------------------------------------------------------
BM_Random/4         1369 ns         1323 ns       526810          4
BM_Random/54      150777 ns       150695 ns         4718         54
BM_Random/104    1046964 ns      1046092 ns          672        104
BM_Random/154    3359127 ns      3356692 ns          203        154
BM_Random/204    7698778 ns      7692782 ns           90        204
BM_Random/254   14885152 ns     14874592 ns           47        254
BM_Random/304   25571931 ns     25553385 ns           27        304
BM_Random/354   40506849 ns     40484808 ns           17        354
BM_Random/404   59950695 ns     59919766 ns           11        404
BM_Random/454   85870123 ns     85813275 ns            8        454
--------------------------------------------------------
Benchmark              Time             CPU   Iterations
--------------------------------------------------------
BM_Random_BigO       0.91 N^3        0.91 N^3
BM_Random_RMS          1 %             1 %

This page uses math latex formatting. Download the extension to render it.