/sweepline-intersections

Given n line segments, efficiently find all points of intersection. This is a modern C++ implementation of the Bentley-Ottman algorithm from (almost) scratch because why not.

Primary LanguageC++

A sweepline algorithm to find line segment intersections

Problem: Given $n$ line segments, efficiently find intersection points in $\mathcal{O}((n + k) log n)$ where $k$ is the number of intersections.

This is a modern C++ implementation of the Bentley-Ottman algorithm from (almost) scratch because why not.

Install Dependencies

To build the project you must have CMake installed.

To install python dependencies

pip install -r requirements.txt

Build Project

Configure:

cmake -DCMAKE_BUILD_TYPE=Release -S . -B build

Build:

cmake --build build --config Release

Build Documentation

To build the documentation you must have Doxygen installed.

cmake --build build --target docs

Output will be in docs/html.

Usage

./bin/app [options]

Options:

-h --help     	shows help message and exits [default: false]
-v --version  	prints version information and exits [default: false]
-i --inputf   	specify the input file
-o --outputf  	specify the output file
-l --logf     	specify the log file
-V --verbose  	write useful debug statements that describe the state at every stage [default: false]
-nc --nocolor 	disable color printing [default: false]

Examples:

./bin/app
./bin/app --verbose -i sample_test.txt -nc --outputf ~/outfile.txt

Note: --inputf may also be relative to ./data.

Input Format

Input must contain the description of the $n$ line segments in the following format (either from stdin or a file — provide the path along with the --inputf flag).

The first line must contain a single integer $n$ — the number of line segments. Each of the next $n$ lines must contain four real numbers $p_x$, $p_y$, $q_x$, $q_y$ — the coordinates of the endpoints $p$ and $q$ of a line segment.

⚠️ Two line segments which coincide with each other either partially or in whole have infinitely many points of intersection. This implementation assumes the input does not have any such cases.

Output Format

The output will contain the description of the $m$ intersection points corresponding to the $n$ line segments in the following format (either to stdout or a file — provide the path along with the --outputf flag).

The first line will contain a single integer $m$ — the number of intersection points. Each of the next $m$ lines will contain two real numbers $x$ and $y$, followed by two or more integers — the coordinates of the corresponding intersection point and the indices of the segments in the input (1-based) that intersect at this point.

⚠️ This implementation is precise upto 9 decimal places, after which accuracy starts dropping.

Additionally, if the --verbose flag is specified, the program will write useful debug statements that describe its state at every stage (either to stderr or a log file — provide the path along with the --logf flag).

The program uses {fmt} to produce colored output on the terminal. Use the --nocolor flag to disable color printing when required since ANSI escape sequences end up being written to files as plain text.

Visualization

Python script to run the app against some input and plot a graph with matplotlib using the output.

cd scripts
./run.py [input_file_path]

Note: input_file_path may also be relative to ./data.

Visualization example output

Note: Plotting the graph is the bottleneck for large inputs.

Testing

This project uses GoogleTest for its unit tests and GoogleBenchmark for benchmarking.

Testing find_intersections() against various edge cases:

cd build
ctest -R EdgeCases -j6

Stress testing the Red Black tree implementation:

cd scripts
./stress_rbtree.sh rbtree_test

Benchmarking against varying input sizes:

./bin/bench --benchmark_counters_tabular=true
2022-03-31T04:19:51+05:30
Running ./bench
Run on (12 X 3000 MHz CPU s)
CPU Caches:
  L1 Data 32 KiB (x6)
  L1 Instruction 32 KiB (x6)
  L2 Unified 512 KiB (x6)
  L3 Unified 4096 KiB (x2)
Load Average: 0.95, 1.85, 1.61
***WARNING*** CPU scaling is enabled, the benchmark real time measurements may be noisy and will incur extra overhead.
------------------------------------------------------------------------------------------------
Benchmark                       Time             CPU   Iterations num_intersections num_segments
------------------------------------------------------------------------------------------------
BM_ObliqueGrid/32/16       622496 ns       622008 ns         1167               512           48
BM_ObliqueGrid/128/16     2997460 ns      2993406 ns          234            2.048k          144
BM_ObliqueGrid/512/16    13430223 ns     13408425 ns           52            8.192k          528
BM_ObliqueGrid/32/64      2520555 ns      2518585 ns          276            2.048k           96
BM_ObliqueGrid/128/64    11492670 ns     11479617 ns           63            8.192k          192
BM_ObliqueGrid/512/64    54566964 ns     54510818 ns           13           32.768k          576
BM_ObliqueGrid/32/256    11395191 ns     11383711 ns           57            8.192k          288
BM_ObliqueGrid/128/256   49801564 ns     49742071 ns           14           32.768k          384
BM_ObliqueGrid/512/256  214269060 ns    213970551 ns            3          131.072k          768
-----------------------------------------------------------------
Benchmark                       Time             CPU   Iterations
-----------------------------------------------------------------
BM_ObliqueGrid_BigO         96.45 NlgN      96.32 NlgN
BM_ObliqueGrid_RMS              6 %             6 %
------------------------------------------------------------------------------------------------
Benchmark                       Time             CPU   Iterations num_intersections num_segments
------------------------------------------------------------------------------------------------
BM_OriginStar/3              2218 ns         2212 ns       319172                 1            3
BM_OriginStar/2003        1173129 ns      1171431 ns          631                 1       2.003k
BM_OriginStar/4003        2245344 ns      2243113 ns          325                 1       4.003k
BM_OriginStar/6003        3301363 ns      3294699 ns          218                 1       6.003k
BM_OriginStar/8003        4346930 ns      4342962 ns          163                 1       8.003k
-----------------------------------------------------------------
Benchmark                       Time             CPU   Iterations
-----------------------------------------------------------------
BM_OriginStar_BigO          43.34 NlgN      43.28 NlgN
BM_OriginStar_RMS               6 %             6 %

Timing Analysis

View the report here. complexity_plot This empirically proves the relation $$ T(n, k) = \Theta((n+k)logn) $$


This page uses math latex formatting. Download the extension to render it.