/D-VQA

PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

Primary LanguagePythonBSD 3-Clause "New" or "Revised" LicenseBSD-3-Clause

D-VQA

We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021).

D-VQA

Dependencies

  • Python 3.6
  • PyTorch 1.1.0
  • dependencies in requirements.txt
  • We train and evaluate all of the models based on one TITAN Xp GPU

Getting Started

Installation

  1. Clone this repository:

     git clone https://github.com/Zhiquan-Wen/D-VQA.git
     cd D-VQA
    
  2. Install PyTorch and other dependencies:

     pip install -r requirements.txt
    

Download and preprocess the data

cd data 
bash download.sh
python preprocess_features.py --input_tsv_folder xxx.tsv --output_h5 xxx.h5
python feature_preprocess.py --input_h5 xxx.h5 --output_path trainval 
python create_dictionary.py --dataroot vqacp2/
python preprocess_text.py --dataroot vqacp2/ --version v2
cd ..

Training

  • Train our model
CUDA_VISIBLE_DEVICES=0 python main.py --dataroot data/vqacp2/ --img_root data/coco/trainval_features --output saved_models_cp2/ --self_loss_weight 3 --self_loss_q 0.7
  • Train the model with 80% of the original training set
CUDA_VISIBLE_DEVICES=0 python main.py --dataroot data/vqacp2/ --img_root data/coco/trainval_features --output saved_models_cp2/ --self_loss_weight 3 --self_loss_q 0.7 --ratio 0.8 

Evaluation

  • A json file of results from the test set can be produced with:
CUDA_VISIBLE_DEVICES=0 python test.py --dataroot data/vqacp2/ --img_root data/coco/trainval_features --checkpoint_path saved_models_cp2/best_model.pth --output saved_models_cp2/result/
  • Compute detailed accuracy for each answer type:
python comput_score.py --input saved_models_cp2/result/XX.json --dataroot data/vqacp2/

Pretrained model

A well-trained model can be found here with raw training log. The test results file produced by it can be found here and its performance is as follows:

Overall score: 61.91
Yes/No: 88.93 Num: 52.32 other: 50.39

Quick Reproduce

  1. Preparing enviroments: we prepare a docker image (built from Dockerfile) which has included above dependencies, you can pull this image from dockerhub or aliyun registry:
docker pull zhiquanwen/debias_vqa:v1
docker pull registry.cn-shenzhen.aliyuncs.com/wenzhiquan/debias_vqa:v1
docker tag registry.cn-shenzhen.aliyuncs.com/wenzhiquan/debias_vqa:v1 zhiquanwen/debias_vqa:v1
  1. Start docker container: start the container by mapping the dataset in it:
docker run --gpus all -it --ipc=host --network=host --shm-size 32g -v /host/path/to/data:/xxx:ro zhiquanwen/debias_vqa:v1
  1. Running: refer to Download and preprocess the data, Training and Evaluation steps in Getting Started.

Results: we obtain 61.73% in VQA-CP2 (which is almost the same as 61.91% in Table 1 of the paper) using the above docker image and training steps. We also provide the raw training log.

Reference

If you found this code is useful, please cite the following paper:

@inproceedings{D-VQA,
  title     = {Debiased Visual Question Answering from Feature and Sample Perspectives},
  author    = {Zhiquan Wen, 
               Guanghui Xu, 
               Mingkui Tan, 
               Qingyao Wu, 
               Qi Wu},
  booktitle = {NeurIPS},
  year = {2021}
}

Acknowledgements

This repository contains code modified from SSL-VQA, thank you very much!

Besides, we thank Yaofo Chen for providing MIO library to accelerate the data loading.