/Convergence_map_public

Primary LanguageFortranMIT LicenseMIT

Information of developer

1. Name: Seong-Yong Yoon
2. Affiliation: Pohang university of science and technology (POSTECH)
3. Advisor: Frederic Barlat
4. E-mail: theysy@postech.ac.kr

Brief description

- The convergence map (CMAP) is a numerical tool to approximatley estimate the numerical stability and computational efficiency.
- CMAP records the number of iteration necessary for convergence of an arbitrary stress update algorithm.
- The darkness of color indicates the number of iteration.
- Individual iteration data are recored on deviatroic plane.
- CMAP_U2 is calculated based on MML_U2 meanwhile CMAP_U3 is based on MML_U3.

How to use CMAP code

1. Fill out the user material property file in UMAT_PROPS folder. Ex) PROPS_AA6022_YLD2K_HAH20.CSV
2. Run 'CMAPS.for' using intel fortran or gfortran
3. 'CAMP.csv' contrains the data for convergence map.
4. Run 'Convg_Mapping.py' using python 3.6.

Prerequisites

  1. Intel or GNU fortran
  2. Python 3.6
  3. Python packages: numpy, matplotlib, pandas

Screeshots

  1. Anisotropic yield function: Yld2000-2d

  1. Anisotropic hardening: HAH20