1. Name: Seong-Yong Yoon
2. Affiliation: Pohang university of science and technology (POSTECH)
3. Advisor: Frederic Barlat
4. E-mail: theysy@postech.ac.kr
- The convergence map (CMAP) is a numerical tool to approximatley estimate the numerical stability and computational efficiency.
- CMAP records the number of iteration necessary for convergence of an arbitrary stress update algorithm.
- The darkness of color indicates the number of iteration.
- Individual iteration data are recored on deviatroic plane.
- CMAP_U2 is calculated based on MML_U2 meanwhile CMAP_U3 is based on MML_U3.
1. Fill out the user material property file in UMAT_PROPS folder. Ex) PROPS_AA6022_YLD2K_HAH20.CSV
2. Run 'CMAPS.for' using intel fortran or gfortran
3. 'CAMP.csv' contrains the data for convergence map.
4. Run 'Convg_Mapping.py' using python 3.6.
- Intel or GNU fortran
- Python 3.6
- Python packages: numpy, matplotlib, pandas
- Anisotropic yield function: Yld2000-2d
- Anisotropic hardening: HAH20