/magnet

This repository contains code for the paper "MAgNet: Mesh-Agnostic Neural PDE Solver" (ICML AI4Science 2022)

Primary LanguagePython

MAgNet: Mesh-Agnostic Neural PDE Solver

This is the official repository to the paper "MAgNet: Mesh-Agnostic Neural PDE Solver" by Oussama Boussif, Dan Assouline, and professors Loubna Benabbou and Yoshua Bengio.

In this paper, we aim to address the problem of learning solutions to Pratial Differential Equations (PDE) while also generalizing to any mesh or resolution at test-time. This effectively enables us to generate predictions at any point of the PDE domain.

@inproceedings{
boussif2022magnet,
title={{MA}gNet: Mesh Agnostic Neural {PDE} Solver},
author={Oussama Boussif and Yoshua Bengio and Loubna Benabbou and Dan Assouline},
booktitle={ICML 2022 2nd AI for Science Workshop},
year={2022},
url={https://openreview.net/forum?id=tbIJmAdqYc8}
}

MAgNet

Predictions

Requirements

Start by installing the required modules:

pip install -r requirements.txt

Dataset

The dataset is available for download at the following link: magnet dataset.

The structure of the dataset is as follows:

├───E1
│   ├───irregular
│   │       CE_test_E1_graph_100.h5
│   │       CE_test_E1_graph_200.h5
│   │       CE_test_E1_graph_40.h5
│   │       CE_test_E1_graph_50.h5
│   │       CE_train_E1_graph_30.h5
│   │       CE_train_E1_graph_50.h5
│   │       CE_train_E1_graph_70.h5
│   │       
│   └───regular
│           CE_test_E1_100.h5
│           CE_test_E1_200.h5
│           CE_test_E1_40.h5
│           CE_test_E1_50.h5
│           CE_train_E1_50.h5
│           
├───E2
│   └───regular
│           CE_train_E2_50.h5
│           CE_test_E2_100.h5
│           CE_test_E2_200.h5
│           CE_test_E2_40.h5
│           CE_test_E2_50.h5
│           
└───E3
    └───regular
            CE_test_E3_100.h5
            CE_test_E3_200.h5
            CE_test_E3_40.h5
            CE_test_E3_50.h5
            CE_train_E3_50.h5

Each file is formatted as follows: CE_{mode}_{dataset}_{resolution}.h5 where mode can be train or test and dataset can be E1, E2 or E3 and resolution denotes the resolution of the dataset. The folder regular contains simulations on a regular grid and irregular contains simulations on an irregular grid.

Experiments

We use hydra for config management and command line parsing so it's straightforward to run experiments using our code-base. Below is an example command for training the MAgNet[CNN] model on the E1 dataset for 250 epochs on four GPUs:

python run.py \
model=magnet_cnn \
name=magnet_cnn \
datamodule=h5_datamodule_implicit \
datamodule.train_path={train_path} \
datamodule.val_path={val_path}' \
datamodule.test_path={test_path} \
datamodule.nt_train=250 \
datamodule.nx_train={train_resolution} \
datamodule.nt_val=250 \
datamodule.nx_val={val_resolution} \
datamodule.nt_test=250 \
datamodule.nx_test={test_resolution} \
datamodule.samples=16 \
model.params.time_slice=25 \
trainer.max_epochs=250 \
trainer.gpus=4 \
trainer.strategy='ddp'

We will shortly release all scripts used for running experiments in the paper.