import {
Hero,
Bids,
Top_collection,
Tranding_category,
NewseLatter,
} from "../../components/component";
import Meta from "../../components/Meta";
import CoverflowCarousel from "../../components/carousel/coverflowCarousel";
import Browse_category from "../../components/categories/Browse_category";
import Feature_collections from "../../components/collectrions/Feature_collections";
const Home = async () => {
// method 1 - using knex
// const knex = require('knex');
// const client = knex({
// client: 'pg',
// connection: {
// host: '
// 'localhost',
//....
// }
// const tweetsSql = await sql<Tweet[]> `SELECT * FROM tweets`; // SELECT * /FROM tweets
// method 2 - using formData
// async function sendTweet(formData:FormData) {
// "use server"
// const text = formData.get('tweet');// as string;
// const userId = formData.get('userId') || 123;
// await sql`INSERT INTO tweets (tweet_text, user_id) VALUES (${text},${userId})`;
// method 3 - using knex
// import knex from "knex";
//
// export const client = knex({
// client: "pg",
// connection: {
// host: "localhost",
// ... // other connection details
// },
// });
// method 3 cont'd - using knex
// export default async function Home() {
// const tweets = await client('tweets').select('*')
// .where('user_id',123); // SELECT * /FROM tweets
// }
// method 3 cont'd - using knex - send formdata
// async function sendTweet(formData:FormData) {
// "use server"
// await client('tweets').insert({
// tweet_text: formData.get('tweet'),
// user_id: formData.get('userId') || 123,
// });
// const rows = await client.select().from('users'); // SELECT * /FROM users
const queries = await client.select('user_id', 'tweet_id', 'name').from('tweets'); // SELECT id, name FROM tweets
const q = await client.query<Tweet>('SELECT * FROM tweets'); // SELECT * FROM Tweets (raw query)
const tweets = q.rows;
console.log(rows);
return (
<main>
<Meta title="Home" />
<Hero />
<CoverflowCarousel />
<Top_collection />
<Browse_category bgWhite={true} />
<NewseLatter bgWhite={true} />
<Feature_collections />
<h2>tweets on crypto ...</h2>
<ul>
{tweets.map((tweet) => (
<li key={tweet.tweet_id}>
<p>{tweet.name}</p>
</li>
))}
</ul>
</main>
);
};
export default Home;
127.0.0.1:3001/cryptonews
/api/countries
/api/coins
/api/blog
api/countries
./startMaven.sh
This app applies data scraper to collect unstructured data. And this app structures into meaningful data, based on the parameters as profiled by self-assessment, and propensity for success
CryptoMaven accepts user information, upon user's request. Next, the data is cleaned, structured and from which derive 17 key variables: Holding constant spurious variables, a multilinear regression analysis predicts' upper and lower confidence levels for a user's optimal crypto-trading strategy, no matter how diversied across the Bitcoin, Altcoin and NFT spaces. Because CryptoMaven does not dispense financial advice, the user's own past combined with external training data. Based on user's survey data (60-question survey, 40% socio-economic/demographic variables & 60% composite variables). These psycho-sociological variables expose, through propensity analysis, a virtual twin, i.e. mirror-like toolset by which one can analyze one's own trading decisions in the past using Propensity Scoring (again using >10,000 users' from NIH datasets for the propensity matching).
Next, optimization through machine-learning uses predictive plots to generate a reliable composite model. Using this data modeling, one can feed and better interpret new data inputs, much like modern, Western Medicine employs meta-analysis for diagnosis and prediction of stochastic (random) variance.
Therefore, with all of the reliable and accurate data models that users generate from their own data, CryptoMaven lets the user come to their conclusion; CryptoMaven App amplifies the research interests of crypto-maven users by conducting breadth-first searches, in the form of online addressing and scraping of unstructured. More importantly, once the ideal topic(s) of interest are identified, the CryptoMaven algorithm engine instructs depth-first searches to new data clusters (INGRESS Edges > 2, using Directed Acyclic Graphing and Sankey Tracking);
Finally, D3js, ChartJS and JQuery-Bootstrap related javascript libraries are imported as Global variables into the Center Piece of CryptoMaven Application Worth: Interactive, Real-Time Graphical Visualization incorporating React/ReactDOM's virtual DOM, through which all D3 updating takes place.
const text = g.selectAll("text") .data(data, function(d) {return d;})
//EXIT old elements not present in new data. text.exit() .attr("class", "exit") .transition(t) .attr("y", 60) .style("fill-opacity", 1e-6) .remove();
text.attr("class", "update") .attr("y", 0) .style("fill-opacity",1) .transition(t) .attr("x", function(d,i) {return i*32;})
//ENTER new elements present in new data text.enter().append("text") .attr("class", "enter") .attr("dy", ".35 em") .attr("y", -60) .attr("x", function(d, i) {return i*32;}) .style("fill-opacity", 1e-6) .transition(t) .attr("x", function(d) {return d;})
However, this model which is inexorably in conflict with React DOM's virtual-DOM is resolved through CryptoMaven's AppGroot $G3 global variable. Who else can dynamically toggle between D3 math-intensive calculations, best run using C WebAssembly; and React's Virtual DOM strong-suit offers a third path solution for DOM control and data sharing for visualization and data state management: If it's everybody's job, then it's not a job, by which I imply statelessness.
-Node.js -Express
Fx | Tools | URLS |
---|---|---|
Database | Oracle SE 11 | [MySQL] |
Object Relational Mapper | Sequelize | [Sequelize] |
Cloud Data | Amazon RDS | [AWS-RDS] |
Cloud Assets | Amazon S3 | [AWS-S3] |
{
"Date": "2019-07-04",
"Symbol": "BTCUSD",
"Open": 11976.42,
"High": 12064.26,
"Low": 11820,
"Close": 11909.55,
"Volume BTC": 1237.57,
"Volume USD": 14790355.69
}
- TypeScript => Vanilla JavaScript
- D3js
- React
- https://cdnjs.cloudflare.com/ajax/libs/rxjs/5.4.3/Rx.js
- https://d3js.org/d3.v4.min.js
- https://unpkg.com/react@17.0.2/umd/react.development.js
- http://d3js.org/queue.v1.min.js
- http://d3js.org/topojson.v1.min.js
- https://d3js.org/d3-geo-projection.v1.min.js
- https://unpkg.com/simple-statistics@2.0.0/dist/simple-statistics.min.js
- https://cdnjs.cloudflare.com/ajax/libs/babel-standalone/6.10.3/babel.min.js
- commuterlink.cmcadlepsyx9.us-east-1.rds.amazonaws.com
- AWS PostgreSQL
- Auto-detected PostgreSQL 10 installation with the data directory at C:\Program Files\PostgreSQL\10\data
- located in server-nginx/README.md
##pm2 https://www.npmjs.com/package/pm2 https://pm2.keymetrics.io/ npm i pm2 -g pm2 start app.js [[instead of node app.js]]
auto-restart after reboot: pm2 startup ubuntu or... sudo env PATH=$PATH:/usr/bin /usr/lib/node_modules/pm2/bin/pm2 startup ubuntu -u ubuntu --hp /home/ubuntu pm2 status
##ufw ufw enable ufw allow ssh ufw allow http ufw allow https
##nginx
sudo apt install nginx
sudo nano /etc/nginx/sites-available/default
sudo nginx -t
sudo service nginx restart
SSL // RHEL-CENTOS sudo yum install certbot-apache -or- sudo amazon-linux-extras install epel sudo yum install certbot-apache
sudo yum install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm sudo yum install certbot // UBUNTU sudo add-apt-repository ppa:certbot/certbot sudo apt-get update sudo apt-get install python-certbot-nginx sudo certbot --nginx -d yourdomain.com -d www.yourdomain.com
certbot renew --dry-run
-
localhost port 5000
-
NGINX -Digital Ocean: [134.122.15.249] -https://hexstat.xyz -local: /home/ubuntu/nfs
-
NGINX -AWS - [35.175.138.209]
* local: /home/thomas/apps/ * bitcoinBuyer1-findersCalculators * https://cryptomaven.xyz https://cryptomaven.us
** DB Cloud Software **
db's README.md inside NODESEQUEL INFO MOVED TO NodeSequel MySQL Sequelize AWS-RDS AWS-S3
console.log(React)
{Children: {…}, createRef: ƒ, Component: ƒ, PureComponent: ƒ, createContext: ƒ, …}
Children: {map: ƒ, forEach: ƒ, count: ƒ, toArray: ƒ, only: ƒ}
Component: ƒ r(a, b, d)
length: 3
name: "r"
prototype:
forceUpdate: ƒ (a)
isReactComponent: {}
setState: ƒ (a, b)
constructor: ƒ r(a, b, d)
[[Prototype]]: Object
arguments: (...)
caller: (...)
[[FunctionLocation]]: app-react.js:55
[[Prototype]]: ƒ ()
[[Scopes]]: Scopes[2]
Fragment: Symbol(react.fragment)
PureComponent: ƒ M(a, b, d)
StrictMode: Symbol(react.strict_mode)
Suspense: Symbol(react.suspense)
cloneElement: ƒ (a, b, d)
createContext: ƒ (a, b)
createElement: ƒ da(a, b, d)
createFactory: ƒ (a)
createRef: ƒ ()
forwardRef: ƒ (a)
isValidElement: ƒ R(a)
lazy: ƒ (a)
memo: ƒ (a, b)
unstable_ConcurrentMode: Symbol(react.concurrent_mode)
unstable_Profiler: Symbol(react.profiler)
version: "16.7.0"
__SECRET_INTERNALS_DO_NOT_USE_OR_YOU_WILL_BE_FIRED: {ReactCurrentOwner: {…}, Scheduler: {…}, SchedulerTracing: {…}, assign: ƒ}
[[Prototype]]: Object
constructor: ƒ Object()
assign: ƒ assign()
create: ƒ create()
defineProperties: ƒ defineProperties()
defineProperty: ƒ defineProperty()
entries: ƒ entries()
freeze: ƒ freeze()
fromEntries: ƒ fromEntries()
{event: null, format: ƒ, formatPrefix: ƒ, timeFormat: ƒ, timeParse: ƒ, …}
active: ƒ (t, n)
arc: ƒ ()
area: ƒ sc()
areaRadial: ƒ gc()
ascending: ƒ n(t, n)
axisBottom: ƒ (t)
axisLeft: ƒ (t)
axisRight: ƒ (t)
axisTop: ƒ (t)
bisect: ƒ (n, e, r, i)
bisectLeft: ƒ (n, e, r, i)
bisectRight: ƒ (n, e, r, i)
bisector: ƒ e(t)
brush: ƒ ()
brushSelection: ƒ (t)
"Pleiades are a group of more than 800 stars located about 410 light-years from Earth in the constellation Taurus."
/// API localhost:5000/api/coins '
const response_coins = {
"data": [
{
"screen_ID": "83",
"screen_data": {
"next_page": 2,
"crypto_data": [
{
"id": "672",
"name": "ERC20",
"country_id": "725",
"pair_id": 1072082,
"currency_symbol": "ERC20",
"inst_price_usd": "0.0000440",
"pair_change_arrow": "up_green",
"change_percent_1d": "+190.88%",
"pair_change_percent_numeric": "190.88",
"change_percent_1d_color": "#3fc932",
"change_percent_7d": "0.00%",
"percent_change_7d_plain": "0.00",
"change_percent_7d_color": "#c2c1c2",
"cross_rates_name": "ERC20",
"inst_price_btc": "0",
"inst_market_cap": "$6.81M",
"inst_market_cap_plain": "6813912",
"volume_24h_usd": "$52.59K",
"volume_24h_usd_plain": "52588",
"total_volume_plain": "0.00",
"total_volume": "0.00%",
"flag_url": "https://i-invdn-com.investing.com/ico_flags/80x80/v32/erc-20.png",
"logo_url": "https://i-invdn-com.investing.com/ico_flags/80x80/v32/erc-20.png"
},
]
}
}
]
}
// http://localhost:5000/cryptoNews
const response_cryptoNews =
[
{
"title": " Ethereum Classic up 75% in 8 days, but will ETH miners migrate after ETC ‘fifthening’? ",
"url": "https://cointelegraph.comundefined",
"source": "cointelegraph"
},
{
"title": " Ethereum Classic up 75% in 8 days, but will ETH miners migrate after ETC ‘fifthening’? ",
"url": "https://cointelegraph.comundefined",
"source": "cointelegraph"
},
{
"title": " Grayscale launches smart contract fund for Ethereum competitors ",
"url": "https://cointelegraph.comundefined",
"source": "cointelegraph"
},
{
"title": " ETH price hits $3K as major crypto fund adds over $110M Ethereum to Lido's staking pool ",
"url": "https://cointelegraph.comundefined",
"source": "cointelegraph"
}
]
// http://localhost:5000/api/nations
const response_nations = {
"countries": [
{
"ci": "104",
"cc": "AF",
"cname": "Afghanistan",
"country_name_translated": "Afghanistan",
"country_international_phone_code": "+93",
"flag_image_32x32": "https://i-invdn-com.investing.com/flags_32x32/circle/Afghanistan.png",
"flag_image_32x32_flat": "https://i-invdn-com.investing.com/flags_32x32_ios/Afghanistan.png"
}
]
}
Thomas Milton Maestas, your Author.
Je me spécialise dans les dernières technologies full-stack, notamment React/Redux 18, TypeScript et Java 8/11, avec une compréhension de niveau Master de l'analyse et de la visualisation des données. J'ai 7 ans d'expérience avec les frameworks Web, les bibliothèques, les coureurs de tâches Webpack et la maîtrise complète d'AWS, y compris les bases de données sans serveur et les fonctions lambda. Mon expérience en analyse de données comprend à la fois des analyses qualitatives et quantitatives, en utilisant R, Python et JavaScript. Les bases de données incluent MySQL, PostgreSQL et Oracle ; AWS DynamoDB et MongoDB, à l'aide de la gestion relationnelle d'objets non relationnels Sequelize. Méthodologie Agile/SCRUM.
I specialize in the latest full-stack technologies including React/Redux 18, TypeScript & Java 8/11; this, along with a Masters-level understanding of data analytics and visualization. I have 7 years of experience with web frameworks, libraries, webpack task-runners and AWS proficiency, based on 3 AWS certifications, including serverless database & lambda functions. My data analysis experience includes both qualitative and quantitative analytics,using R, Python, and JavaScript. Databases include MySQL, PostgreSQL, and Oracle; along with AWS DynamoDB and MongoDB, using Sequelize non-relational Object Relational Management. Agile/SCRUM Methodology.
{
Name : "Thomas Milton Maestas",
Title : "Software Developer",
Email : "thomas.maestas@hotmail.com",
URL : [ "thomasmaestas.net", "ourdailytech.net"],
Company : "TMM",
Media : {
linkedIn : "linkedin.com/in/thomasmaestas",
github : "github.com/thomasm1"
}
}