DecT
Source code for ACL 2023 paper Decoder Tuning
Installation
Our code is based on PyTorch, HuggingFace Transformers, and OpenPrompt, please install dependencies by
pip install -r requirements.txt
Download Datasets
Download the 10 datasets with the following scripts
cd datasets
bash download_datasets.sh
cd ..
Run DecT
Then you can run DecT by running run_dect.py
, for example
python src/run_dect.py \
--model roberta \
--size large \
--type mlm \
--model_name_or_path roberta-large \
--shot 1 \
--dataset sst2 \
--proto_dim 128 \
--model_logits_weight 1 \
In run_dect.py
we provide instructions for each argument. To reproduce the results in paper, please run the following combinations
python src/run_dect.py \
--shot [1, 4, 16] \
--dataset [sst2, imdb, yelp, agnews, dbpedia, yahoo, rte, snli, mnli-m, mnli-mm, fewnerd] \
--seed [0, 1, 2, 3, 4] \
Configure Models
You can configure different models by setting model
, type
, size
, model_name_or_path
parameters.
model
: Model name. We now support plms in OpenPrompt, LLaMA, Alpaca and Vicuna.type
:mlm
,lm
orchat
. This will determine the prompt template. Forlm
type models, we put the[mask]
token at the end of the template. Forchat
models, we implement the chat template for Vicuna v1.1. You may change the template if you use other models.size
: Model size. Currently, it is used to set the hidden state dimension for LLaMA models.model_name_or_path
: Path to model weights.
You can also modify the load_model
function in src/run_dect.py
to support more models!