/GEDI-WSCI

Primary LanguageRMIT LicenseMIT

DOI

GEDI Waveform Structural Complexity Index (WSCI)

This repository contains the models and code used to develop the GEDI WSCI data product (de Conto et al. 2024).

Description

The scripts provided here enable performing 2 tasks:

  • (R) Calculate the 3D Canopy Entropy (CExyz) (Liu et al. 2022) from LiDAR point cloud samples.
  • (python) Apply the WSCI models to a set of RH metrics.

All software versions listed in this repository were used for developing and testing the scripts.

R code

The R packages necessary to run the als_ce_xyz.R tool are listed in the r_session.txt file.

This code was originally used to extract CExyz measures from Airborle laser Scanning (ALS) data matched to GEDI footprints - same location and size (25m diameter plots).

Usage

Rscript als_ce_xyz.R
    [-[-help|h]]                        print help
    [-[-input|i] <character>]           path with point cloud LiDAR files (las/laz)
    [-[-output|o] <character>]          path to write structural complexity metrics - a directory when processing wall-to-wall <w2w> or a geospatial vector format otherwie (gpkg, shp, geojson etc.)
    [-[-plots_path|f] <character>]      (optional) input file with plot locations (e.g. GEDI footprints) in geospatial vector format (gpkg, shp, geojson etc.)
    [-[-n_plots|n] <integer>]           (optional) if no input plot locations are provided, how many random samples to draw? [default = 100]
    [-[-plot_size|s] <integer>]         (optional) plot diameter, in point cloud units [default = 25]
    [-[-gridded|g]]                     (optional) sample from a regular grid instead of randomly
    [-[-w2w|w]]                         (optional) wall-to-wall processing - calculate metrics for all pixels at <plot_size> resolution
    [-[-las_epsg|e] <integer>]          (optional) EPSG code of input LiDAR point clouds, if not encoded in the las/laz file
    [-[-voxel|v] <double>]              (optional) voxel size flter to apply to LiDAR files before processing 
    [-[-cores|c] <integer>]             (optional) number of CPU cores to use
Output
column dtype description
0 XY float horizontal entropy component
1 XZ float vertical entropy component
2 YZ float vertical entropy component
3 XYZ float 3D canopy entropy
4 p float p value from Mann-Kendall trend test
5 vox float voxel size

When processing wall-to-wall (w2w) generates raster files with bands corresponding to the metrics in column.

Python code

The python libraries necessary to run the WSCI models are listed in the python_requirements.txt file.

This code was originally used to generate WSCI estimates from GEDI RH metrics extracted from the L2A product (Dubayah et al. 2020) at different Plant Functional Types (PFTs).

Usage
gedi_wsci.py [-h] -i INPUT -o OUTPUT [-p PFT] [-r RH_COLS] [-x INDEX [INDEX ...]]

Apply Waveform Structural Complexity (WSCI) model to input RH metrics

options:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        input RH metrics [cm] as columns (from 0 to 100)
  -o OUTPUT, --output OUTPUT
                        output file
  -p PFT, --pft PFT     PFT code or column name
  -r RH_COLS, --rh-cols RH_COLS
                        string pattern to select RH columns
  -x INDEX [INDEX ...], --index INDEX [INDEX ...]
                        columns to copy from input file into the output

The PFT codes used to call different WSCI models are listed below:

PFT short name long name
1 ENT Evergreen Needleaf Trees
2 EBT Evergreen Broadleaf Trees
4 DBT Deciduous Broadleaf Trees
5 G Grassland
6 S Shrubland
11 W Woodland
-1 - Other
Output
column dtype description
0 wsci float Waveform Structural Complexity Index estimate
1 wsci_pi float WSCI prediction interval at 95% probability
2 wsci_xy float Estimated horizontal complexity component
3 wsci_xy_pi float Horizontal component prediction interval at 95% probability
4 wsci_z float Estimated vertical complexity
5 wsci_z_pi float Vertical component prediction interval at 95% probability

References

de Conto, T., Armston, J. & Dubayah, R. Characterizing the structural complexity of the Earth’s forests with spaceborne lidar. Nat Commun 15, 8116 (2024). https://doi.org/10.1038/s41467-024-52468-2

de Conto, T., Armston, J. & Dubayah, R. O. Global Ecosystem Dynamics Investigation (GEDI)GEDI L4C Footprint Level Waveform Structural Complexity Index, Version 2 (2024). https://doi.org/10.3334/ORNLDAAC/2338

Dubayah, R. et al. GEDI L2A Elevation and Height Metrics Data Global Footprint Level V002. NASA EOSDIS Land Processes Distributed Active Archive Center (2021). https://doi.org/10.5067/GEDI/GEDI02_A.002

Liu, X. et al. A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds. Remote Sensing of Environment 282, 113280 (2022).