Implementation of papers:
- Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition
ACM International Conference on Multimedia (ACM MM), 2020.
Yuan Xie, Tianshui Chen, Tao Pu, Hefeng Wu, Liang Lin.
Ubuntu 16.04 LTS, Python 3.5, PyTorch 1.3
PS: We also provide docker image for this project, click here. (Tag: py3-pytorch1.3-agra)
You can download datasets in Baidu Drive (password: c7xi) and OneDrive (password: xxxx), which includes CK+/SFEW 2.0/FER2013/JAFFE/ExpW/RAF/AFED.
PS : In order to comply with relevant regulations, you need to apply for the image data of the following data sets by yourself, including CK+/SFEW 2.0/FER2013/JAFFE/ExpW/RAF.
You can download pre-train models in Baidu Drive (password: tzrf) and OneDrive (password: xxx).
PS: To replace backbone of each methods, you should modify and run getPreTrainedModel_ResNet.py (or getPreTrainedModel_MobileNet.py) in the folder where you want to use the method.
Before run these script files, you should download datasets and pre-train model, and run getPreTrainedModel_ResNet.py (or getPreTrainedModel_MobileNet.py).
cd AGRA
bash TrainOnSourceDomain.sh # Train Model On Source Domain
bash TransferToTargetDomain.sh # Then, Transfer Model to Target Domain
cd AGRA
bash TrainWithSAFN.sh
cd SWD
bash Train.sh
cd LPL
bash Train.sh
cd AGRA
bash TrainOnSourceDomain.sh
# Set Lambda = 1, if you want use ECAN.
# Set Lambda = 0, if you want use DETN.
bash TransferToTargetDomain.sh
cd FTDNN
bash Train.sh
cd ICID
bash Train.sh
cd DFA
bash Train.sh
Methods | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|
ICID | 74.42 | 50.70 | 48.85 | 53.70 | 69.54 | 59.44 |
DFA | 64.26 | 44.44 | 43.07 | 45.79 | 56.86 | 50.88 |
LPL | 74.42 | 53.05 | 48.85 | 55.89 | 66.90 | 59.82 |
DETN | 78.22 | 55.89 | 49.40 | 52.29 | 47.58 | 56.68 |
FTDNN | 79.07 | 52.11 | 47.48 | 55.98 | 67.72 | 60.47 |
ECAN | 79.77 | 57.28 | 52.29 | 56.46 | 47.37 | 58.63 |
CADA | 72.09 | 52.11 | 53.44 | 57.61 | 63.15 | 59.68 |
SAFN | 75.97 | 61.03 | 52.98 | 55.64 | 64.91 | 62.11 |
SWD | 75.19 | 54.93 | 52.06 | 55.84 | 68.35 | 61.27 |
Ours | 85.27 | 61.50 | 56.43 | 58.95 | 68.50 | 66.13 |
Methods | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|
ICID | 56.59 | 57.28 | 44.27 | 46.92 | 52.91 | 51.59 |
DFA | 51.86 | 52.70 | 38.03 | 41.93 | 60.12 | 48.93 |
LPL | 73.64 | 61.03 | 49.77 | 49.54 | 55.26 | 57.85 |
DETN | 56.27 | 52.11 | 44.72 | 42.17 | 59.80 | 51.01 |
FTDNN | 61.24 | 57.75 | 47.25 | 46.36 | 52.89 | 53.10 |
ECAN | 58.14 | 56.91 | 46.33 | 46.30 | 61.44 | 53.82 |
CADA | 72.09 | 49.77 | 50.92 | 50.32 | 61.70 | 56.96 |
SAFN | 73.64 | 64.79 | 49.08 | 48.89 | 55.69 | 58.42 |
SWD | 72.09 | 61.50 | 48.85 | 48.83 | 56.22 | 57.50 |
Ours | 78.57 | 65.43 | 51.18 | 51.31 | 62.71 | 61.84 |
Methods | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|
ICID | 67.44 | 48.83 | 47.02 | 53.00 | 68.52 | 56.96 |
DFA | 54.26 | 42.25 | 38.30 | 47.88 | 47.42 | 46.02 |
LPL | 72.87 | 53.99 | 49.31 | 53.61 | 68.35 | 59.63 |
DETN | 64.19 | 52.11 | 42.25 | 42.01 | 43.92 | 48.90 |
FTDNN | 76.74 | 50.23 | 49.54 | 53.28 | 68.08 | 59.57 |
ECAN | 66.51 | 52.11 | 48.21 | 50.76 | 48.73 | 53.26 |
CADA | 73.64 | 55.40 | 52.29 | 54.71 | 63.74 | 59.96 |
SAFN | 68.99 | 49.30 | 50.46 | 53.31 | 68.32 | 58.08 |
SWD | 72.09 | 53.52 | 49.31 | 53.70 | 65.85 | 58.89 |
Ours | 77.52 | 61.03 | 52.75 | 54.94 | 69.70 | 63.19 |
Methods | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|
ICID | 54.26 | 51.17 | 47.48 | 46.44 | 54.85 | 50.84 |
DFA | 35.66 | 45.82 | 34.63 | 36.88 | 62.53 | 43.10 |
LPL | 67.44 | 62.91 | 48.39 | 49.82 | 54.51 | 56.61 |
DETN | 44.19 | 47.23 | 45.46 | 45.39 | 58.41 | 48.14 |
FTDNN | 58.91 | 59.15 | 47.02 | 48.58 | 55.29 | 53.79 |
ECAN | 44.19 | 60.56 | 43.26 | 46.15 | 62.52 | 51.34 |
CADA | 72.09 | 53.99 | 48.39 | 48.61 | 58.50 | 56.32 |
SAFN | 68.22 | 61.50 | 50.46 | 50.07 | 55.17 | 57.08 |
SWD | 77.52 | 59.15 | 50.69 | 51.84 | 56.56 | 59.15 |
Ours | 79.84 | 61.03 | 51.15 | 51.95 | 65.03 | 61.80 |
Methods | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|
ICID | 57.36 | 37.56 | 38.30 | 44.47 | 60.64 | 47.67 |
DFA | 41.86 | 35.21 | 29.36 | 42.36 | 43.66 | 38.49 |
LPL | 59.69 | 40.38 | 40.14 | 50.13 | 62.26 | 50.52 |
DETN | 53.49 | 40.38 | 35.09 | 45.88 | 45.26 | 44.02 |
FTDNN | 71.32 | 46.01 | 45.41 | 49.96 | 62.87 | 55.11 |
ECAN | 53.49 | 43.08 | 35.09 | 45.77 | 45.09 | 44.50 |
CADA | 62.79 | 53.05 | 43.12 | 49.34 | 59.40 | 53.54 |
SAFN | 66.67 | 45.07 | 40.14 | 49.90 | 61.40 | 52.64 |
SWD | 68.22 | 55.40 | 43.58 | 50.30 | 60.04 | 55.51 |
Ours | 72.87 | 55.40 | 45.64 | 51.05 | 63.94 | 57.78 |
Methods | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|
ICID | 55.04 | 42.72 | 34.86 | 39.94 | 44.34 | 43.38 |
DFA | 44.19 | 27.70 | 31.88 | 35.95 | 61.55 | 40.25 |
LPL | 69.77 | 50.23 | 43.35 | 45.57 | 51.63 | 52.11 |
DETN | 57.36 | 54.46 | 32.80 | 44.11 | 64.36 | 50.62 |
FTDNN | 65.12 | 46.01 | 46.10 | 46.69 | 53.02 | 51.39 |
ECAN | 71.32 | 56.40 | 37.61 | 45.34 | 64.00 | 54.93 |
CADA | 70.54 | 45.07 | 40.14 | 46.72 | 54.93 | 51.48 |
SAFN | 62.79 | 53.99 | 42.66 | 46.61 | 52.65 | 51.74 |
SWD | 64.34 | 53.52 | 44.72 | 50.24 | 55.85 | 53.73 |
Ours | 75.19 | 54.46 | 47.25 | 47.88 | 61.10 | 57.18 |
Methods | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|
ResNet-50 | 75.87 | 54.30 | 54.49 | 54.82 | 62.09 | 59.51 |
ResNet-18 | 69.43 | 51.88 | 47.94 | 51.72 | 61.26 | 56.45 |
MobileNet V2 | 60.78 | 45.15 | 39.59 | 47.92 | 56.46 | 49.98 |
Methods | CK+ | JAFFE | SFEW2.0 | FER2013 | ExpW | Mean |
---|---|---|---|---|---|---|
ResNet-50 | 65.41 | 57.93 | 47.04 | 47.26 | 57.87 | 55.10 |
ResNet-18 | 60.23 | 56.25 | 46.95 | 47.57 | 58.34 | 53.87 |
MobileNet V2 | 63.57 | 48.46 | 40.14 | 44.91 | 56.34 | 50.68 |
To Be Done.
For any questions, feel free to open an issue or contact us: