/SeisMonitoring_Paper

Input files and jupyter notebooks to reproduce the processings and figures associated with the ambient seismic noise in Parkfield.

Primary LanguageJupyter NotebookMIT LicenseMIT

SeisMonitoring Paper

Input files and jupyter notebooks to reproduce the processings and figures associated with the ambient seismic noise in Parkfield.

Documentation

See the documentation for the instruction of running the examples, downloading the cross-correlation data and the recipe of generating the figures.

Documentation DOI

Recipe of figures

See the recipe of figures to perform the post-processing and plot figures.

Contents

Examples

Input files and the output log of the ambient seismic noise processing using SeisMonitoring.jl.

See the docs to run the processing from downloading the data, cross-correlation, stacking, and measurement of dv/v.

We also have the tutorial of the software in different Github repository: See SeisMonitoring_Example.


Post

Post-processing of the cross-correlation and dv/v time history.

Compute the strain field and evaluate the sensitivity of dv/v to the cumulative strain.

Plot the availability of seismic data.

Fitting the model to the observed dv/v time history.

Plot the spectrogram of the continuous seismic waveform.

Maps

Plot the map and compute the fault normal distance of the seismic stations.

Others

Notebooks to test the codes.

Utils

Some scripts used for manipulating the input and output of processings.

Download list of dataset

The intermediate files of the post-processing are available in the UW dasway (doi: 10.6069/PK9D-9411).

Filename Size Description Location in repo
SeisMonitoring_PPSDdata.tar.gz 1.4GB Probabilistic power spectral densities of the raw seismic data. Post/Spectrogram/
BP.CCRB-BP.CCRB-11.jld2 (← Link to download docs) ~500MB/pair Cross-correlation functions over 20 years for a give station-channel pair with different frequency bands. e.g. Appx/plot_CCF/cc_channel_collection/
corrdata_BP.LCCB-BP.SCYB-11_0.9-1.2.npz (← Link to download docs) ~50MB/pair Cross-correlation function of 0.9-1.2Hz stored in .npz format. Appx/plot_CCF/data_npz/
monitoring_stats_uwbackup_2010-2022.tar.gz 82MB dv/v datasheet associated with the Stretching and MWCS methods Post/ModelFit/data/
MCMC_sampler_20000_v2_master.tar.gz 3.3GB Sampler of MCMC parameter search. Post/ModelFit/processed_data/
modelparam_data_master.tar.gz 84MB Maximum likelihood model parameters. Post/ModelFit/
MCMC_sampler_20000_v2_resheal.tar.gz 138MB Sampler of MCMC parameter search associated with the residual healing model. Appx/casestudy_residual_healing/processed_data_resheal
MCMC_sampler_15000_v1_nobounds.tar.gz 2.1GB Sampler of MCMC parameter search for the case without the bounds of model parameters. Others/get_MCMC_fixedparam/processed_data
modelparam_data_fixedparam.tar.gz 38MB Sampler of MCMC parameter search for the case without the bounds of model parameters. Others/get_MCMC_fixedparam/
monitoring_stats_TACCbackup.tar.gz 452MB archived dv/v datasheet of the case study in TACC Other/dvvanalysis_onTACC/data/

Development environment of notebooks

We developed the notebooks using Mac OS (Monterey 12.6.7). The environment of python is exported in environment.yml. We used the Julia v1.8.1, SeisIO v1.2.1, and SeisNoise v0.5.3. The other dependencies associated with Julia can be found in the tutorial in the SeisMonitoring_Example.

You can create the python environment and launch the jupyter lab by

git clone https://github.com/kura-okubo/SeisMonitoring_Paper.git
cd SeisMonitoring_Paper
conda env create -f environment.yml
conda activate seismonitoring_paper
jupyter lab

The default browser to open the jupyter lab can be changed following here.

To remove (uninstall) the environment, run the followings:

conda deactivate
conda env remove -n seismonitoring_paper

Reference