XingTian (刑天) is a componentized library for the development and verification of reinforcement learning algorithms. It supports multiple algorithms, including DQN, DDPG, PPO, and IMPALA etc, which could training agents in multiple environments, such as Gym, Atari, Torcs, StarCraft and so on. To meet users' requirements for quick verification and solving RL problems, four modules are abstracted: Algorithm
, Model
, Agent
, and Environment
. They work in a similar way as the combination of `Lego' building blocks. For details about the architecture, please see the Architecture introduction. Feel free to make good use of issue submission, or join our QQ chatroom (Chinese): 833345709.
# ubuntu 18.04
sudo apt-get install python3-pip libopencv-dev redis-server -y
pip3 install opencv-python
# run with tensorflow 1.15.0
pip3 install zmq h5py gym[atari] tqdm imageio matplotlib==3.0.3 Ipython pyyaml tensorflow==1.15.0 pyarrow lz4 fabric2 line_profiler redis absl-py psutil
or, using pip3 install -r requirements.txt
If your want to used PyTorch as the backend, please install it by yourself. Ref Pytorch
# cd PATH/TO/XingTian
pip3 install -e .
After installation, you could use import xt; print(xt.__Version__)
to check whether the installation is successful.
In [1]: import xt
In [2]: xt.__version__
Out[2]: '0.1.1'
Follow's configuration shows a minimal example with Cartpole environment. More detailed description with the parameters of agent, algorithm and environment could been find in the User guide .
alg_para:
alg_name: PPO
env_para:
env_name: GymEnv
env_info: {'name': CartPole-v0, 'vision': False}
agent_para:
agent_name: CartpolePpo
agent_num : 1
agent_config: {
'max_steps': 200,
'complete_step': 500000}
model_para:
actor:
model_name: PpoMlp
state_dim: [4]
action_dim: 2
summary: True
env_num: 10
In addition, your could find more configuration sets in examples directory.
python3 xt/main.py -f examples/cartpole_ppo.yaml -t train
Set test_node_config
and test_model_path
for evaluation within the YOUR_CONFIG_FILE.yaml
python3 xt/main.py -f examples/cartpole_ppo.yaml -t evaluate
NOTE: XingTian start with
-t train
as default.
# Could replace `python3 xt/main.py` with `xt_main` command!
xt_main -f examples/cartpole_ppo.yaml -t train
- Write custom module, and register it. More detail guidance on custom module can be found in the Developer Guide
- Add YOUR-CUSTOM-MODULE name into
your_train_configure.yaml
- Start training with
xt_main -f path/to/your_train_configure.yaml
:)
- DQN Reward after 10M time-steps (40M frames).
env | XingTian Basic DQN | RLlib Basic DQN | Hessel et al. DQN |
---|---|---|---|
BeamRider | 6706 | 2869 | ~2000 |
Breakout | 352 | 287 | ~150 |
QBert | 14087 | 3921 | ~4000 |
SpaceInvaders | 947 | 650 | ~500 |
- PPO Reward after 10M time-steps (40M frames).
env | XingTian PPO | RLlib PPO | Baselines PPO |
---|---|---|---|
BeamRider | 4204 | 2807 | ~1800 |
Breakout | 243 | 104 | ~250 |
QBert | 12288 | 11085 | ~14000 |
SpaceInvaders | 1135 | 671 | ~800 |
- DQN
env | XingTian Basic DQN | RLlib Basic DQN |
---|---|---|
BeamRider | 129 | 109 |
Breakout | 117 | 113 |
QBert | 111 | 90 |
SpaceInvaders | 115 | 100 |
- PPO
env | XingTian PPO | RLlib PPO |
---|---|---|
BeamRider | 1775 | 1618 |
Breakout | 1801 | 1535 |
QBert | 1741 | 1617 |
SpaceInvaders | 1858 | 1608 |
Experiment condition: 72 Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz with single Tesla V100
XingTian refers to the following projects: DeepMind/scalable_agent, baselines, ray.
The MIT License(MIT)