forecast not working as expected with %S%
gacolitti opened this issue · 3 comments
gacolitti commented
I can't seem to get forecast
to work as expected when using the switching operator.
I expected this to work:
library(lubridate)
library(tsibble)
library(tsibbledata)
library(fasster)
data(vic_elec)
elec_fit <- vic_elec %>%
dplyr::filter(year(Date) == 2012, month(Date) == 1) %>%
model(FASSTER(
log(Demand) ~
Holiday %S% (fourier(48, 16) + trend(1)) +
Temperature + I(Temperature^2)
))
future <- vic_elec %>%
dplyr::filter(year(Date) == 2012, month(Date) == 2)
elec_fit %>%
forecast(new_data = future)
#> Error: Problem with `mutate()` input `FASSTER(log(Demand) ~ Holiday %S% (fourier(48, 16) + trend(1)) +
#> Temperature + I(Temperature^2))`.
#> x subscript out of bounds
#> i Input `FASSTER(log(Demand) ~ Holiday %S% (fourier(48, 16) + trend(1)) +
#> Temperature + I(Temperature^2))` is `(function (object, ...) ...`.
Created on 2020-08-17 by the reprex package (v0.3.0)
mitchelloharawild commented
This is related to #48, the future data does not contain all levels of the switching operator and so the number of columns differs for forecasting.
mitchelloharawild commented
All fixed, thanks!
library(lubridate)
#>
#> Attaching package: 'lubridate'
#> The following objects are masked from 'package:base':
#>
#> date, intersect, setdiff, union
library(tsibble)
#>
#> Attaching package: 'tsibble'
#> The following object is masked from 'package:lubridate':
#>
#> interval
library(tsibbledata)
library(fasster)
#> Loading required package: fabletools
data(vic_elec)
elec_fit <- vic_elec %>%
dplyr::filter(year(Date) == 2012, month(Date) == 1) %>%
model(FASSTER(
log(Demand) ~
Holiday %S% (fourier(48, 16) + trend(1)) +
Temperature + I(Temperature^2)
))
future <- vic_elec %>%
dplyr::filter(year(Date) == 2012, month(Date) == 2)
elec_fit %>%
forecast(new_data = future)
#> # A fable: 1,392 x 7 [30m] <Australia/Melbourne>
#> # Key: .model [1]
#> .model Time Demand .mean Temperature Date
#> <chr> <dttm> <dist> <dbl> <dbl> <date>
#> 1 "FASS… 2012-02-01 00:00:00 t(N(8.3, 0.0022)) 4213. 15.7 2012-02-01
#> 2 "FASS… 2012-02-01 00:30:00 t(N(8.3, 0.0031)) 4142. 15.5 2012-02-01
#> 3 "FASS… 2012-02-01 01:00:00 t(N(8.3, 0.0036)) 3877. 15.3 2012-02-01
#> 4 "FASS… 2012-02-01 01:30:00 t(N(8.2, 0.0041)) 3814. 15.2 2012-02-01
#> 5 "FASS… 2012-02-01 02:00:00 t(N(8.3, 0.0047)) 3948. 15.1 2012-02-01
#> 6 "FASS… 2012-02-01 02:30:00 t(N(8.3, 0.0053)) 3904. 15.0 2012-02-01
#> 7 "FASS… 2012-02-01 03:00:00 t(N(8.2, 0.0059)) 3707. 14.8 2012-02-01
#> 8 "FASS… 2012-02-01 03:30:00 t(N(8.2, 0.0068)) 3609. 14.4 2012-02-01
#> 9 "FASS… 2012-02-01 04:00:00 t(N(8.2, 0.0078)) 3582. 13.9 2012-02-01
#> 10 "FASS… 2012-02-01 04:30:00 t(N(8.2, 0.0088)) 3562. 13.6 2012-02-01
#> # … with 1,382 more rows, and 1 more variable: Holiday <lgl>
Created on 2020-08-18 by the reprex package (v0.3.0)
gacolitti commented
Awesome. Thank you!