/ST-GAT

ST-GAT: Spatio-Temporal Graph Attention Network for TrafficFlow Prediction

Primary LanguagePythonMIT LicenseMIT

ST-GAT

image

This is an implementation of Spatio-Temporal Graph Attention Network.

Datasets

The processed datasets are available at Google Drive.

All datasets should be in './data'.

Environment

  • python 3.8.10
  • pytorch 1.9.0
  • numpy 1.19.5

Commands

# Train
python ST-GAT.py --mode=train --data=METR-LA --conf=./config/metr-la.conf

# Test
python ST-GAT.py --mode=test --data=METR-LA --saved_model=./out/metr-la/best_model --conf=./config/metr-la.conf

Experiments

Table: Training and inference time comparison.

image

Authors

Cite

We encourage you to cite our paper if you have used the code in your work. You can use the following BibTex citation:

@inproceedings{song2022st,
  title={ST-GAT: A Spatio-Temporal Graph Attention Network for Accurate Traffic Speed Prediction},
  author={Song, Junho and Son, Jiwon and Seo, Dong-hyuk and Han, Kyungsik and Kim, Namhyuk and Kim, Sang-Wook},
  booktitle={Proceedings of the 31st ACM International Conference on Information \& Knowledge Management},
  pages={4500--4504},
  year={2022}
}