This is an implementation of Spatio-Temporal Graph Attention Network.
The processed datasets are available at Google Drive.
All datasets should be in './data'.
- python 3.8.10
- pytorch 1.9.0
- numpy 1.19.5
# Train
python ST-GAT.py --mode=train --data=METR-LA --conf=./config/metr-la.conf
# Test
python ST-GAT.py --mode=test --data=METR-LA --saved_model=./out/metr-la/best_model --conf=./config/metr-la.conf
Table: Training and inference time comparison.
- Junho Song (junonjuno@bigdas.hanyang.ac.kr)
- Jiwon Son (tinybeing@bigdas.hanyang.ac.kr)
- Dong-hyuk Seo (hyuk125@bigdas.hanyang.ac.kr)
- Kyungsik Han (kyungsikhan@hanyang.ac.kr)
- Namhyuk Kim (namhyuk.kim@hyundai.com)
- Sang-Wook Kim (wook@hanyang.ac.kr)
We encourage you to cite our paper if you have used the code in your work. You can use the following BibTex citation:
@inproceedings{song2022st,
title={ST-GAT: A Spatio-Temporal Graph Attention Network for Accurate Traffic Speed Prediction},
author={Song, Junho and Son, Jiwon and Seo, Dong-hyuk and Han, Kyungsik and Kim, Namhyuk and Kim, Sang-Wook},
booktitle={Proceedings of the 31st ACM International Conference on Information \& Knowledge Management},
pages={4500--4504},
year={2022}
}