/CAMELYON_BENCHMARK

CAMELYON BENCHMARK : better datasets for MIL methods

MIT LicenseMIT

CAMELYON_BENCHMARK

INTRODUCTION

why we do this work?

Multiple Instance Learning (MIL) methods are mainstream approaches for pathological image classification and analysis. The CAMELYON-16/17 datasets are commonly used to evaluate MIL methods. However, they have the following issues:

  • CAMELYON-16/17 datasets contain some problematic slides
  • Pixel-annotations of CAMELYON-16/17 test-dataset not accurate enough
  • Different MIL methods do not have a unified dataset-split and evaluation-metrics on the CAMELYON dataset
  • To conclude,there is no BENCHMARK for MIL methods

what we do in this work?

We do the following work to establish a CAMELYON-BENCHMARK

  • Remove some problematic slides.
  • Correct problematic annotations.
  • Merge the CAMELYON-16/17 datasets and add some new slides to organize a larger, more balanced CAMELYON-NEW dataset.
  • Evaluate mainstream MIL methods on the CAMELYON-NEW dataset.
  • Evaluate mainstream feature extractors on the CAMELYON-NEW dataset.
  • Use more comprehensive evaluation metrics to assess different methods.
  • In summary, we establish a new CAMELYON-BENCHMARK.

CAMELYON-NEW

balanced-dataset-split

  • We apply balanced-dataset-split
  • Details will be released soon

download

BASELINE

FEATURE-ENCODER

SETTINGS

  • Obtain the patches on 20X Magnification
  • Keep the Hyperparameter settings of original implement
  • Use uniform,balanced dataset-split

RUSULTS

REFINE-CAMELYON-17 (4 classes)

VIT_S-METRICS

MIL PARAMS ACC B-ACC AUC F1 PRE
MEAN mobilenet 3.3M 34.02 10.56 60 60
MAX mobilenet 3.3M 34.02 10.56 60 60
AB mobilenet 3.3M 34.02 10.56 60 60
G-AB mobilenet 3.3M 34.02 10.56 60 60
TRANS mobilenet 3.3M 34.02 10.56 60 60
DS mobilenet 3.3M 34.02 10.56 60 60
CLAM-SB mobilenet 3.3M 34.02 10.56 60 60
CLAM_MB mobilenet 3.3M 34.02 10.56 60 60
RRT mobilenet 3.3M 34.02 10.56 60 60
WIKG mobilenet 3.3M 34.02 10.56 60 60

PLIP-METRICS

MIL PARAMS ACC B-ACC AUC F1 PRE
MEAN mobilenet 3.3M 34.02 10.56 60 60
MAX mobilenet 3.3M 34.02 10.56 60 60
AB mobilenet 3.3M 34.02 10.56 60 60
G-AB mobilenet 3.3M 34.02 10.56 60 60
TRANS mobilenet 3.3M 34.02 10.56 60 60
DS mobilenet 3.3M 34.02 10.56 60 60
CLAM-SB mobilenet 3.3M 34.02 10.56 60 60
CLAM_MB mobilenet 3.3M 34.02 10.56 60 60
RRT mobilenet 3.3M 34.02 10.56 60 60
WIKG mobilenet 3.3M 34.02 10.56 60 60

UNI-METRICS

MIL PARAMS ACC B-ACC AUC F1 PRE
MEAN mobilenet 3.3M 34.02 10.56 60 60
MAX mobilenet 3.3M 34.02 10.56 60 60
AB mobilenet 3.3M 34.02 10.56 60 60
G-AB mobilenet 3.3M 34.02 10.56 60 60
TRANS mobilenet 3.3M 34.02 10.56 60 60
DS mobilenet 3.3M 34.02 10.56 60 60
CLAM-SB mobilenet 3.3M 34.02 10.56 60 60
CLAM_MB mobilenet 3.3M 34.02 10.56 60 60
RRT mobilenet 3.3M 34.02 10.56 60 60
WIKG mobilenet 3.3M 34.02 10.56 60 60

RESNET50-METRICS

MIL PARAMS ACC B-ACC AUC F1 PRE
MEAN mobilenet 3.3M 34.02 10.56 60 60
MAX mobilenet 3.3M 34.02 10.56 60 60
AB mobilenet 3.3M 34.02 10.56 60 60
G-AB mobilenet 3.3M 34.02 10.56 60 60
TRANS mobilenet 3.3M 34.02 10.56 60 60
DS mobilenet 3.3M 34.02 10.56 60 60
CLAM-SB mobilenet 3.3M 34.02 10.56 60 60
CLAM_MB mobilenet 3.3M 34.02 10.56 60 60
RRT mobilenet 3.3M 34.02 10.56 60 60
WIKG mobilenet 3.3M 34.02 10.56 60 60