This repository is the implementation of GLAC Net: GLocal Attention Cascading Network for the Visual Storytelling Challenge 2018 as a team SnuBiVtt. Our model got the highest score in the human evaluation of the challenge.
Python 3.6 or 2.7
Pytorch >= 1.0.0
git clone https://github.com/tkim-snu/GLACNet.git
cd GLACNet
pip3 install -r requirements.txt
python3
>>> import nltk
>>> nltk.download('punkt')
>>> exit()
All the images should be resized to 256x256.
python3 resize.py --image_dir [train_image_dir] --output_dir [output_train_dir]
python3 resize.py --image_dir [val_image_dir] --output_dir [output_val_dir]
python3 resize.py --image_dir [test_image_dir] --output_dir [output_test_dir]
python3 build_vocab.py
python3 train.py
1. Download the evaluation tool (METEOR score) for the VIST Challenge
git clone https://github.com/windx0303/VIST-Challenge-NAACL-2018 ../VIST-Challenge-NAACL-2018
sudo apt install default-jdk
python3 eval.py --model_num [my_model_num]
The result.json file will be found in the root directory.
We provide the pretrained model(for Python3).
Please download the link and move to <GLACNet root>/models/
.
@article{Kim2018GLAC,
title={GLAC Net: GLocal Attention Cascading Networks for Multi-image Cued Story Generation},
author={Taehyeong Kim and Min-Oh Heo and Seonil Son and Kyoung-Wha Park and Byoung-Tak Zhang},
journal={CoRR},
year={2018},
volume={abs/1805.10973}
}
MIT License
This repository refer to pytorch tutorial by yunjey.