Static analysis of Python web applications based on theoretical foundations (Control flow graphs, fixed point, dataflow analysis)
- Detect Command injection
- Detect SQL injection
- Detect XSS
- Detect directory traversal
- Get a control flow graph
- Get a def-use and/or a use-def chain
- Search GitHub and analyse hits with PyT
- Scan intraprocedural or interprocedural
- A lot of customisation possible
Example usage and output:
- git clone https://github.com/KevinHock/pyt.git
- python setup.py install
- pyt -h
Using it like a user python -m pyt -f example/vulnerable_code/XSS_call.py save -du
Running the tests python -m tests
Running an individual test file python -m unittest tests.import_test
Running an individual test python -m unittest tests.import_test.ImportTest.test_import
Join our slack group: https://pyt-dev.slack.com/ - ask for invite: mr.thalmann@gmail.com
[Guidelines](https://github.com/KevinHock/pyt/blob/master/CONTRIBUTIONS.md)
Create a directory to hold the virtual env and project
mkdir ~/a_folder
cd ~/a_folder
Clone the project into the directory
git clone https://github.com/KevinHock/pyt.git
Create the virtual environment
python3 -m venv ~/a_folder/
Check that you have the right versions
python --version
sample output Python 3.6.0
pip --version
sample output pip 9.0.1 from /Users/kevinhock/a_folder/lib/python3.6/site-packages (python 3.6)
Change to project directory
cd pyt
Install dependencies
pip install -r requirements.txt
pip list
sample output
gitdb (0.6.4) GitPython (2.0.8) graphviz (0.4.10) pip (9.0.1) requests (2.10.0) setuptools (28.8.0) smmap (0.9.0)
In the future, just type source ~/a_folder/bin/activate
to start developing.