A Python library for handling TICRA Tools simulation design and output.
Definition and Normalization of Field Components
$$\begin{aligned}
E &= \frac{1}{k \sqrt{2\zeta}} E_{SI} \\
H &= \frac{1}{k} \sqrt{\frac{\zeta}{2}} H_{SI} \\
J^e &= \frac{1}{k} \sqrt{\frac{\zeta}{2}} J^e_{SI} \\
J^m &= \frac{1}{k \sqrt{2\zeta}} J^m_{SI} \\
\end{aligned} $$
$$\begin{aligned}
[E_{SI}] &= volts / meters \\
[H_{SI}] &= ampere / meters \\
[J^e_{SI}] &= ampere / meters \\
[J^m_{SI}] &= volts / meters \\
\end{aligned} $$
$$\begin{aligned}
P &= \frac{1}{2} Re(E_{SI} \times H^__{SI}) \\
&= k^2 Re(E \times H^_)
\end{aligned}$$
Planar Grid Polarizarition
- linear
- circular
- rho_phi
- major_minor
- liner_xpd
- cross-polar discrimination ratio
- circular_xpd
- rho_phi_xpd
- majo_minor_xpd
- power
- poynting
- 1 uv-grid
- 2 $\rho\phi$-grid
- 3 xy-grid
- 4 Elevation over Azimuth
- 5 Elevation and Azimuth
- 6 Azimuth over Elevation
- 7 $\theta\phi$-grid
- 8 $\phi z$-grid
- 9 Azimuth over Elevation (EDX Definition)
- 10 Elevation over Azimuth (EDX Definition)
r = (u, v, $\sqrt{1-u^2-v^2}$)
u = $\sin\theta\cos\phi$
v = $\sin\theta\sin\phi$
r = $-\sin(Az)\cos(El)$, $\sin(El)$, $\cos(Az)\cos(El)$
Install
python setup.py bdist_wheel
pip install .\dist\pyticra-22.1-py3-none-any.whl --force-reinstall