/pyticra

Primary LanguagePython

pyticra

A Python library for handling TICRA Tools simulation design and output.

Definition and Normalization of Field Components

$$\begin{aligned} E &= \frac{1}{k \sqrt{2\zeta}} E_{SI} \\ H &= \frac{1}{k} \sqrt{\frac{\zeta}{2}} H_{SI} \\ J^e &= \frac{1}{k} \sqrt{\frac{\zeta}{2}} J^e_{SI} \\ J^m &= \frac{1}{k \sqrt{2\zeta}} J^m_{SI} \\ \end{aligned} $$

$$\begin{aligned} [E_{SI}] &= volts / meters \\ [H_{SI}] &= ampere / meters \\ [J^e_{SI}] &= ampere / meters \\ [J^m_{SI}] &= volts / meters \\ \end{aligned} $$

$$\begin{aligned} P &= \frac{1}{2} Re(E_{SI} \times H^__{SI}) \\ &= k^2 Re(E \times H^_) \end{aligned}$$

Planar Grid Polarizarition

  • linear
  • circular
  • rho_phi
  • major_minor
  • liner_xpd
    • cross-polar discrimination ratio
  • circular_xpd
  • rho_phi_xpd
  • majo_minor_xpd
  • power
  • poynting
    • unit [Watts/m^2]

IGRID

  • 1 uv-grid
  • 2 $\rho\phi$-grid
  • 3 xy-grid
  • 4 Elevation over Azimuth
  • 5 Elevation and Azimuth
  • 6 Azimuth over Elevation
  • 7 $\theta\phi$-grid
  • 8 $\phi z$-grid
  • 9 Azimuth over Elevation (EDX Definition)
  • 10 Elevation over Azimuth (EDX Definition)

IGRID uv-grid

r = (u, v, $\sqrt{1-u^2-v^2}$)
u = $\sin\theta\cos\phi$
v = $\sin\theta\sin\phi$

IGRID $\rho\phi$-grid

r = $-\sin(Az)\cos(El)$, $\sin(El)$, $\cos(Az)\cos(El)$


Install

python setup.py bdist_wheel
pip install .\dist\pyticra-22.1-py3-none-any.whl --force-reinstall