Command to run CLI

python run.py --infile <input filename> --outfile <output filename> --learnrate <(0.0,1.0]>

Other command-line options are given below.

Configuration parameters as command-line options

  • Specify the learning rate (default value is 0.01) -- *required.

     --learnrate
    

    Determines the step size of the weight update and is critical to the convergence of the algorithm to the global minima of the objective function. A very high learning rate might end up missing certain local minima. A very low learning will end up slowing down the learning process.

  • Specify the number of layers in the neural network.

     --nlayers
    

    Number of layers depends on the number of features that need to be extracted from the data.

  • Specify the dimensions of each layer in the neural network.

     --layerdim
    

    Number of computation units in each layer.

  • Specify the fraction of RUnits that are dropped out (value is in range [0.0, 1.0).

     --dropout_fraction_ru
    

    Drop a fraction of recurrent connections that remember the past results. Dropping RUnits would reduce exposure to data and hence, prevent overfitting.

  • Specify the fraction of input units that are dropped out (value is in range [0.0, 1.0).

     --dropout_fraction_rw
    

    Drop fraction of inputs from passing to the next layer in the network. This helps in being more robust to noise.

  • Specify the optimizer.

     --optimizer
    

    There are currently three optimizers (Adam, SGD and RMSprop).

  • Specify the momentum.

     --momentum
    

    Weighted sum of past gradients that is used to accelerate learning and provide direction to the optimiser.

  • Specify the training percent (The value is in range (0.0, 1.0]).

     --trainpct
    

    Percent of data to be used for training. The remaining would be used for testing and evaluation.

  • Specify the error metric.

     --errmetric
    
  • Specify the number of epochs.

     --epoch
    

    Number of passes through the whole training data.

Command-line options

  • Specify input filename (.csv) -- *required.

     --infile
    

    The input file currently needs to contain 1-dimensional data.

  • Specify output filename -- *required.

     --outfile
    
  • Specify a config JSON file as input.

     --config
    

    Can use this to provide a file containing a JSON with appropriate parameters as the configuration to run the neural network. If config file provided, then all configuration parameters specified (those specified above) on the command-line would be ignored.

    *Example config JSON is shown below*,
    ```
    {  
      "n_layers": 4,  
      "dropout_fraction_ru": 0.1,  
      "dropout_fraction_rw": 0.1,  
      "layer_dimensions": [1, 60, 60, 1],  
      "optimizer": "adam",  
      "learning_rate": 0.001,  
      "momentum": 0.1,  
      "training_percent": 0.5,  
      "err_metric": "mean_squared_error",  
      "epoch": 10  
    }
    ```  
    
  • Specify log filename (default logfile is _log).

     --logfile
    
  • Append the run configuration to the logfile.

     --append
    

Command to run GUI

python gui.py

GUI Guide -- Configuration Input

GUI Guide -- Results