/EEG-Emotion-Classification-List

A collection of emotion classification using electroencephalogram (EEG) data

MIT LicenseMIT

EEG-Emotion-Classification-List

A collection of implement of emotion classification using electroencephalogram (EEG) data.

  • Dataset: provided
  • Feature Extraction: Fast Fourier Transformation (FFT)
  • Classification: KNN
  • Emotion dimension: Valence, Arosual
  • Accuracy: (Binary) 82.33% for Valence, (Binary) 87.32% for Arousal.
  • Dataset: not provided
  • Feature Extraction: Fast Fourier Transformation (FFT)
  • Classification: model-free, Alpha Asymmetry
  • Emotion dimension: Valence, Arosual
  • Accuracy: not provided
  • Dataset: provided
  • Feature Extraction: Raw EEG
  • Classification: RNN and LSTM
  • Emotion dimension: Valence, Arosual, Dominance
  • Accuracy: not provided
  • Dataset: DEAP, should never be provided but provided
  • Feature Extraction: Fast Fourier Transformation (FFT), Standard Deviation
  • Classification: Support Vector Machine
  • Emotion dimension: Valence, Arosual, Dominance, (Liking, Familarity)
  • Accuracy: claimed to be 98%, no details provided